
FORMAL METHODS IN PRACTICE:

ANALYSIS AND APPLICATION OF FORMAL MODELING TO

INFORMATION SYSTEMS

by

Peter Andrew Geer

A thesis

submitted to the Faculty of the Graduate School of the

State University of New York Institute of Technology at Utica/Rome

in partial fulfillment of the requirements

for the degree of Master of Science

December 2011

ii

Accepted and recommended for partial fulfillment of the requirements for

the degree of Master of Science at the State University of New York Institute

of Technology at Utica/Rome by:

Jorge Novillo (adviser)

Roger Cavallo

Michael Pittarelli

iii

Copyright by

Peter Andrew Geer

c©2011

Abstract

Formal methods have been in development and use for 40 years. Proponents

have long claimed that the application of formal methods would be a boon to

the software development industry, leading to fewer defects, greater levels of

quality, and lower overall cost. Furthermore, they promise to lend a formal,

mathematical basis to the design and coding of software systems, allowing

practitioners to apply more powerful methods of analysis and validation.

Despite these claims, uptake of formal methods in industry has been

sluggish at best. While there have been a number of high-profile case studies

published, formal methods are not commonly used in the development of

“typical” business software, e.g. small to medium sized information systems.

This thesis will explore the evolution of formal methods, their current uses

and trends, and how they compare to current non-formal and semi-formal

methods. It will describe some areas in which formal methods could be

productively applied to the development of non-critical information systems

and provide an example of how such an application can be specified and

implemented using formal modeling with a modern, dynamic programming

iv

v

language.

Contents

1 Introduction 1

2 History 3

2.1 Formal program meaning . 3

2.1.1 Beginnings . 5

2.1.2 Hoare Logics . 5

2.1.3 Dijkstra and Gries . 7

2.1.4 Object Oriented program semantics 8

2.2 Formal modeling . 9

2.2.1 VDM and Z . 10

2.2.2 Semi-formal Modeling 10

2.3 Purpose and Need for Formal Methods 11

2.3.1 Complexity . 11

2.3.2 “Scientific” programming 12

2.3.3 Improve reliability . 12

3 Overview of Formal Methods 14

vi

CONTENTS vii

3.1 Methods . 15

3.1.1 SPARK . 15

3.1.2 VDM and VDM-SL . 16

3.1.3 Z . 17

3.1.4 Object-Z . 18

3.1.5 VDM++ . 18

3.1.6 TCOZ . 19

3.2 Ways to apply FM . 20

3.2.1 Full formalism with proof 20

3.2.2 Full requirements or design 21

3.2.3 Semi-formal design or requirements 22

3.2.4 Targeted application 22

3.2.5 System review . 23

3.2.6 Test case generation 23

3.3 Places to apply formalism . 24

3.3.1 Code level . 24

3.3.2 System design . 25

3.3.3 Database design . 26

3.3.4 Requirements analysis 26

3.4 The “methods” in formal methods 27

3.4.1 System review . 27

3.4.2 Automated tool support 28

3.4.3 Limited formalization 29

CONTENTS viii

3.4.4 Micro-methods . 30

4 Applications of Formal Methods 31

4.1 CICS . 32

4.2 FM vs. CMM experiment . 34

4.3 Light-weight review . 35

4.4 Pondage power plants . 36

4.5 Radiotherapy machine . 37

4.6 International Survey . 38

4.6.1 SSADM . 39

4.6.2 Inmos transputer . 40

4.6.3 Darlington nuclear generator 41

4.7 Various Praxis projects . 42

4.7.1 Multos CA . 43

4.7.2 SHOLIS . 44

4.7.3 Lockheed C130J . 45

4.7.4 SIL4 failure . 47

4.7.5 CDIS . 47

5 Controversy and debate over applicability 49

5.1 Why are formal methods not used? 49

5.1.1 Tool support . 51

5.1.2 Method complexity . 52

5.1.3 Lack of awareness . 54

CONTENTS ix

5.2 Reasons to use formal methods 54

5.2.1 Increased reliability . 55

5.2.2 Increased tractability 56

5.2.3 Decreased cost . 56

5.2.4 Proof of quality . 57

5.2.5 Advancement of software engineering 58

5.2.6 Generation of test cases 59

5.3 Arguments against formal methods 60

5.3.1 Formal specifications are not generally meaningful . . . 60

5.3.2 Inapplicability of FM to certain areas 61

5.3.3 Expensive . 62

6 Applying Formal Methods in Non-Critical and Information

Systems 65

6.1 Lessons . 65

6.1.1 Long-term investment 65

6.1.2 Expensive to start . 66

6.1.3 Need resident experts 67

6.1.4 Tools helpful but not necessary 68

6.1.5 Right method for the right job 69

6.2 Formal Methods in Information Systems 71

6.2.1 Role of formalism: specification vs. design 71

6.2.2 Business rules . 72

CONTENTS x

6.2.3 User interface specification 74

6.2.4 Databases . 76

6.3 Goals . 79

6.3.1 Black-box formal methods 79

6.3.2 Design patterns for FM 81

6.3.3 Standard notation or general method 82

7 Modeling a Web Application Using VDM++ and PHP 84

7.1 Choice of technology and notation 85

7.1.1 Formal notation . 86

7.1.2 Tooling . 87

7.1.3 Overview of the PHP language 89

7.2 Development Approach . 93

7.3 System requirements . 94

7.3.1 Requirements specification 96

7.3.2 System model . 103

7.4 Component-level specification 104

7.5 System Design . 106

7.5.1 Architecture . 106

7.5.2 Database Design . 111

7.5.3 Control Flow Modeling 117

8 Implementation of the Formal Specification 123

8.1 Approach . 123

CONTENTS xi

8.2 Architecture and Design . 125

8.3 Design Variations . 126

8.3.1 Addition of view logic 126

8.3.2 Usability revisions . 127

8.3.3 Dynamic instantiation 128

8.3.4 Permission list population 129

8.4 Results . 129

9 Conclusion 132

A Listing of system requirements 134

A.1 Informal high-level requirements 134

A.2 Elaborated requirements . 135

B Formal Models 137

B.1 High-Level Specification . 137

B.2 Component-Level Specification 149

B.3 Detailed Specification . 158

B.3.1 Controller Classes . 158

B.3.2 Model Classes . 182

B.3.3 Other Classes . 195

C System Code 231

C.1 Controller Classes . 231

C.2 Library Classes . 253

CONTENTS xii

C.3 Model Classes . 285

C.4 View Templates . 296

C.5 Auxiliary Files . 317

List of Tables

4.1 SSADM code break-down . 39

4.2 Total effort on SSADM by phase 39

xiii

1 Introduction

Formal methods have been a controversial topic since they emerged forty

years ago. They have been held up by some as the answer to the woes of

software development, as a way to put the “science” back into “Computer Sci-

ence.” They offer a mathematical precision in program analysis that gives

us the possibility of having certainly with regard to program correctness,

something that simple testing and informal review can never provide. On

the other side of the debate, detractors have dismissed formal methods as

an exercise for academics. They have been described as too complicated and

costly, requiring special training to apply and time and effort disproportion-

ate to the gain in software quality.

As with most such disputes, the truth lies somewhere in between. Formal

methods are by no means a staple of the main-stream software engineer’s

repertoire. However, they are not unheard of in industry, as there are a

number of case studies in the literature that report the use of formal methods

having a positive affect on the outcome of software engineering projects. Such

success stories seem to be predominately with regard to so-called “critical

1

CHAPTER 1. INTRODUCTION 2

system,” although some cases of non-critical business systems using formal

methods have been reported.

This thesis will explore the feasibility of using “light-weight” formal meth-

ods in non-critical information systems. It will examine some of the case

studies of formal method use from the literature, examine some of the meth-

ods that are used in industry, and analyze the results of these studies and

draw general conclusions as to the efficacy of formal methods in different

areas of application. These will then be applied to a “light-weight” formal

treatment of a web-based information system. This example is intended to

demonstrate the application of light-weight formal modeling to modern web

application development with dynamic programming languages and to pro-

vide a template approach to applying formal modeling to similar systems.

2 History

2.1 Formal program meaning

Broadly speaking, formal methods refers to the effort to assign formal math-

ematical meaning to the artifacts of the software development process. This

formalism can be applied to high-level system or requirements specifications,

low-level source code, and any level in between. The broad goal of these

methods is to increase the quality of software development by making the re-

quirements, design, or implementation of a system more explicit, thus making

defects more readily apparent.

There are a large number of formal methods and notations described

in the literature. They vary widely in their focus, how they are applied,

and how widely they have been used, making them difficult to categorize.

Furthermore, there are so-called semi-formal methods, which can serve a

similar purpose, but do not offer a fully formalized semantics.

Traditionally, one method of categorizing formal methods has been to

divide them into three groups based on how their semantics are defined:

3

2.1. FORMAL PROGRAM MEANING 4

axiomatic, denotational, or operational. Methods using an axiomatic seman-

tics, such as described by Dijkstra and Gries, define operations by reference

to their effects on program state, e.g. via pre- and post-conditions. Methods

using a denotational semantics, such as VDM, fix the meaning of program

operations by defining them in terms of mathematical structures, such as

functions. Finally, notations using an operational semantics, such as Z, de-

fine the meaning of statements in terms of how they modify the state of some

abstract machine.

Another way to roughly categorize formal methods is based on how they

are applied. Two of the most obvious categories are modeling methods and

code verification methods. Modeling methods, such as Z, describe a system

abstractly, via a model constructed in the notation. Code-verification meth-

ods, such as Dijkstra’s, describe the formal meaning of an implementation

(usually in programming language code) directly, rather than indirectly via

higher level models.

Many formal methods cut across these categories. For instance, VDM-SL

is a modeling language, but sufficiently low-level models can be constructed

as to define the behavior of individual programming constructs. Likewise,

while VDM’s semantics is denotational, its refinement method allows for an

axiomatic interpretation of operations.

While these categorizations may have been more meaningful when for-

mal methods were first gaining traction, they are less useful today. Formal

methods have developed in many directions and there has been a great deal

2.1. FORMAL PROGRAM MEANING 5

of cross-pollination between methods. The following sections will sketch the

evolution of formal methods and describe some of the variations and direc-

tions it has taken.

2.1.1 Beginnings

Work in formal methods started in the 1960’s, with R. W. Floyd and C. A.

R. Hoare. Floyd’s Assigning Meaning to Programs [Flo67] and Hoare’s An

axiomatic basis for computer programming [Hoa69] put forth a method of

describing the meaning of a computer program mathematically.

Floyd’s work was one of the earliest examples of the type of formal se-

mantics that later evolved. Using example programs in a flowchart based

language and in ALGOL, he described a system based on pre- and post-

conditions for program execution. The meaning of a programming construct

was fixed based on axioms and rules of inference. The method was essentially

to start from an initial condition and, at each statement in the program, ap-

ply the inference rules for that statement to deduce what is true after it is

executed. This is essentially the same type of method which Hoare later

described.

2.1.2 Hoare Logics

Hoare’s paper [Hoa69] introduced the basis of axiomatic semantics for pro-

gramming languages upon which others later expanded. The paper intro-

2.1. FORMAL PROGRAM MEANING 6

duces Hoare Logic and the so-called Hoare triple. This became the basis of

further work by Hoare, Gries, and Dijkstra, among others.

Hoare Logic defines the meaning of a program statement using axioms

that relate the precondition and postcondition of program execution. This is

described by the triple P{Q}R, where P is the precondition of the program,

Q is the program text itself, and R is the postcondition. This formulation

has an operational semantics analog, where P can be seen as an initial system

state and R as a final system state, with Q being a program that moves the

system from the initial state to the final state.

Using Hoare logic, it is possible to deductively prove that a program is

“correct.” That is, one can use predicate logic to demonstrate that, for

a given program, the postcondition of the Hoare triple is implied by the

precondition. For each statement in the programming language, Hoare Logic

defines an axiom which describes the meaning of that statement. By starting

from the precondition and applying the appropriate axiom to each statement

in the program, it is possible to determine the postcondition implied by the

program. If this calculated postcondition matches or implies the original

stated postcondition, then the program is “correct” with respect to the stated

pre- and post-conditions.

In addition to this notion of simple correctness, Hoare Logics also have

a notion of partial versus total correctness. This distinction refers to the

termination of looping statements. Informally, a “partially correct” program

guarantees that, for program specification P{Q}R,if the program terminates,

2.1. FORMAL PROGRAM MEANING 7

then if P is true initially, R will be true upon completion. It does not guaran-

tee that the program will terminate (in which case there is no postcondition

to check – the program loops indefinitely). Total correctness goes the extra

step and establishes not only the correctness of the Hoare triple, but also

proves that the program will, in fact, terminate. This is accomplished by ex-

tending the inference rules for looping, adding a bound condition to establish

that the program cannot loop forever.

2.1.3 Dijkstra and Gries

Dijkstra and Gries expanded on Hoare’s premise. This is exemplified in

[Gri81], which summarizes the axiomatic semantic definitions for most of the

basic imperative programming constructs. This includes the basic procedural

programming statements such as conditionals and iterative statements, as

well as more advanced constructs, such as the simultaneous assignment and

procedure calls [GL80].

These definitions use the wp() predicate transformer introduced by Dijk-

stra. This transforms a program statement and postcondition predicate into

the “weakest precondition” for that statement – informally, the weakest con-

dition that must hold prior to statement execution to make the postcondition

true afterward. For example, the predicate transformer for an assignment

statement is defined by the axiom wp(“x := y ′′,P) = Py
x , where Py

x denotes

the postcondition P with all instances of x textually substituted for y . Thus

if the postcondition is i = x + 3 ∧ j < 7, then the weakest precondition is

2.1. FORMAL PROGRAM MEANING 8

i = y + 3 ∧ j < 7. This is analogous to the Hoare triple Py
x {Q}P .

Other, more novel work has been done with Dijkstra’s wp() semantics.

One example is the modification of the axiomatic semantics discussed by

Nelson and Broy [BN94]. They expand on the nondeterminism in Dijkstra’s

original semantics, seen primarily in the definition of the if statement, which

does not specify a method for resolving cases where more than one of the set

of guard conditions is true. By removing the Law of the Excluded Miracle,

they expand this nondeterminism and introduce a “fair choice” operator to

execute two statements and nondeterministically return a result.

2.1.4 Object Oriented program semantics

The early work of Hoare, Dijkstra, and Gries focused on the semantics of

procedural programming languages similar to ALGOL. Since then, software

development has moved to a largely object-oriented paradigm. This gives

rise to the need for further work to define the formal meaning of common

features of object orientation. A number of researchers have turned their

efforts in this direction.

One example of this is the work of Naumann and Cavalcanti [CN00].

They developed a formal semantics of a Java-like object-oriented language

called ROOL. They use a semantics based on predicate transformers and

take into account common object-oriented features such as visibility control

and dynamic binding, as well as recursive classes and methods.

Another direction in object-oriented formalism is represented by JML,

2.2. FORMAL MODELING 9

the Java Modeling Language.[LBR99] JML is an behavioral interface speci-

fication language for Java. It allows developers to specify the behavior of an

interface or class in Java source code using special JML statements embedded

in Java comments. These statements use a logic and model-based semantics

similar to that of VDM.

2.2 Formal modeling

Formal modeling, as the name suggests, is the use of a formal language to

create a model of a system. Such models can be created at various levels of

abstraction. While some, such as JML, are designed to work at the source

code level, this thesis is concerned primarily with more general notations,

such as Z and VDM. These can operate at the source code level, but are

not specifically designed to do so and are in no way tied to a particular

implementation language.

Modeling languages are one of the most common formal methods used in

published case studies. While they do allow for the rigor required to prove

properties of the system, in many studies, there is no attempt to undertake

such proof. The modeling language is employed simply as a design tool and

an aid to understanding and specifying the system. Some case studies suggest

that the use of formal modeling can be beneficial even when no hard proof

is attempted. Such uses of formal methods without the use formal proof, or

with only targeted, small-scale application of proof, are sometimes termed

2.2. FORMAL MODELING 10

“light-weight formal methods”.

2.2.1 VDM and Z

Two of the oldest and most established formal modeling languages are the

Vienna Development Method Specification Language, or VDM-SL, and Z.

VDM developed from work begun in the late 1960’s and early 1970’s at

IBM’s Vienna laboratory. Z was developed in the 1970’s by the Oxford

Programming Research Group.

In contrast to notations like Dijkstra’s language or JML, VDM-SL and

Z are not tied to any particular programming language and so are normally

not used at the code level. They are, rather, used to model the specification

or design of a system. Both VDM-SL and Z describe systems in terms of the

data types involved, some variables representing the state of the system, and

some operations on that state. The behavior of these data and operation is

expressed through pre- and post-conditions as well as state invariants. Since

these conditions and invariants are written in terms of a formal logic using

set theory and predicate calculus, it is possible to prove various properties

about them.

2.2.2 Semi-formal Modeling

In contrast to formal modeling languages, there are also semi-formal mod-

eling languages. Undoubtedly the most well known such language is the

2.3. PURPOSE AND NEED FOR FORMAL METHODS 11

Unified Modeling Language, or UML. The UML is a graphical notation for

modeling the structure and behavior of a system. While UML has a standard

syntax and semantics, specified by the Object Management Group (OMG),

it is semi-formal in the sense that it does not have a notation for describing

the the semantics of the various components of a system. For example, in a

UML class diagram, there is no formal notation for describing the meaning

of class methods. (There is the Object Constraint Language which can be

combined with traditional UML, but it is relatively new and not widely used

by comparison.)

2.3 Purpose and Need for Formal Methods

There are many possible reasons for adopting formal methods. They address

a number of needs in computing science and software development and so

can offer different benefits depending on the reason they are applied. This

section outlines a few of the reasons that have been put forth for adopting

formal methods. Later chapters will explore these and other reasons in more

depth – the following is simply meant to set the tone of this thesis.

2.3.1 Complexity

One of the reasons for the development of formal methods was the explosion

in software complexity that started in the 1960s. At that time, software

systems were quickly becoming more complex, but advances in tools and

2.3. PURPOSE AND NEED FOR FORMAL METHODS 12

methods for development did not keep pace. Thus, there was an apparent

need for new methods that would allow developers to get a handle on this

complexity. Formal methods made this possible by providing a mathematical

framework for analyzing programs.

2.3.2 “Scientific” programming

The term “software engineering” is, in some ways, nothing more than a cruel

joke. Engineering is generally considered a practice founded on sound, disci-

plined scientific reasoning and empirical data. Yet software development, to

a large extent, remains an extremely ad hoc and haphazard field of endeavor,

often appearing to be based as much on fads as on facts.

Formal methods of analysis would provide a mathematical basis for soft-

ware development, putting it in line with proper scientific or engineering

disciplines. Without such a mathematical grounding, it can be argued that

programming is no more than a black art, or at best a “craft” akin to wood

working.

2.3.3 Improve reliability

Perhaps the most obvious and compelling reason to adopt formal methods

is that mathematical analysis offers a method by which programs can be

shown to be free of bugs on some level. As E. W. Dijkstra famously quipped,

“Program testing can be used to show the presence of bugs, but never to show

2.3. PURPOSE AND NEED FOR FORMAL METHODS 13

their absence.” Of course, even program proof is not enough to guarantee

that a system will have zero defects. However, it does allow for stronger

assertions of correctness than testing does. It can also be applied to a system

even when real-world testing is not feasible for cost or safety reasons.

3 Overview of Formal

Methods

Formal methods are not a unitary entity, but rather an umbrella term for

various levels and methods of formal analysis.

As discussed in the previous chapter, the earliest efforts in formal methods

focused on code-level analysis. This is exemplified by the axiomatic system

described in Gries’s The Science of Programming [Gri81], which focuses on

proof of code correctness and the derivation of programs. Such methods

focus on the lower levels of implementation, i.e. justifying specific code.

While such approaches are useful, they are not well equipped to address

problems in system specification or design. It has long been known that

errors in these higher levels of system construction can be the costliest to

fix if not discovered until late in implementation. To this end, researchers

have developed a variety of higher level formal modeling notations. These

are designed to describe the behavior of systems independent of particular

implementation. This allows for formal analysis to be performed earlier in

14

3.1. METHODS 15

the development cycle and find design defects.

This chapter will discuss some of the more commonly used and cited

formal methods currently in use, as well as how they have been applied.

3.1 Methods

There are a considerable number of formal methods that have been discussed

in the literature and used in industry, varying considerably in scope and

approach. This section will provide an overview of a few of the more common

or noteworthy methods, with attention to the methods that were used in the

case studies presented later.

3.1.1 SPARK

Perhaps the most noteworthy code-level formal method is SPARK Ada, the

cornerstone of the “correctness by construction” approach of Altran Praxis.

Researchers and engineers at Praxis have used SPARK successfully in many

commercial projects and have published a number of journal articles detailing

their results.

SPARK is simultaneously a programming language and a tool set. SPARK-

Ada is a subset of the standard Ada programming language designed to

be susceptible to static proof of correctness. SPARK programs are valid

Ada programs, but contain comments, called contracts or annotations, de-

scribing the semantics of the code, including pre- and post-conditions, data

3.1. METHODS 16

constraints, etc. The SPARK tool set contains utilities to validate these

annotations, generate and discharge proof obligations, etc.

The SPARK tool set is designed to insure high levels of system correct-

ness. Thus most of the published case studies involving SPARK have involved

critical or high-integrity systems. Several of these systems are discussed in

the next chapter.

3.1.2 VDM and VDM-SL

The Vienna Development Method, commonly referred to as VDM, is a true

formal development method, including a specification language, refinement

rules, and proof theory. It was developed in the 1970’s at IBM’s Vienna lab-

oratory. It arose from work done in the late 1960’s using VDL, the Vienna

Definition Language, to describe abstract interpreters for programming lan-

guages such as PL/I. VDM was the result of the Vienna group’s attempts to

systematically develop a compiler from a language definition. [BJ78] VDM

was standardized by the ISO in 1996.

The general principle of VDM as a method is that of refinement. This

is the process of converting abstract specifications into more concrete repre-

sentations through a mathematically justified series of steps. To this end, at

each step in the process, VDM provides rules for satisfying proof obligations

and retrieving more abstract representations. Because this process results

in a representation that is closer to a real “thing” and is, in that sense, less

“refined,” it is sometimes referred to as reification rather than refinement.

3.1. METHODS 17

Perhaps the most commonly used portion of VDM is the specification

language, VDM-SL (sometimes imprecisely referred to simply as “VDM”).

It is a state-based modeling language with a logic based on first-order pred-

icate calculus and set theory. VDM-SL uses a denotational semantics, with

operations defined in terms of functions mapping inputs to outputs.

While VDM-SL is often used as a requirements specification language, it

is equally well suited to system design. It allows for a great deal of flexibility

in data definition and has a rich set of primitive types. VDM-SL also has

two modes of specification: implicit and explicit. An implicitly specified

operation is described using a precondition and postcondition, not unlike a

specification in Hoare Logic. An explicitly defined operation, by contrast, is

defined in much the same way as a procedure in a programming language

– as a series of explicit applications of functions and primitive statements.

Operations specified in this mode can sometimes be translated almost directly

into program code, if desired.

3.1.3 Z

The Z (pronounced as the British “zed”) formal modeling language was de-

veloped in the late 1970’s by the Programming Research Group at Oxford

University. It is based on first-order predicate logic and the Zermelo-Fraenkel

set theory. The Z notation was formalized by the ISO in 2002 as ISO/IEC

13568:2002.

Z has been in use for many years and is one of the more widely discussed

3.1. METHODS 18

formal methods in the literature. It has spawned a number of variations to

support more advanced and specialized features, such as object orientation

and concurrency. It also has a relatively large number of resources and

supporting tools available, both commercial and freely available.

The most distinguishing feature of Z, and also its primary structuring

construct, is the schema. Z schemata are a boxed notation used to describe

both system state and operations. They encapsulate data and state invari-

ants as well as providing for pre- and post-conditions. Z also allows for the

composition of schemata, making it possible to build up specifications in an

incremental manner.

3.1.4 Object-Z

As the name suggests, Object-Z is an object-oriented extension of Z. It

was developed at the University of Queensland in the late 1980’s and early

1990’s. [Smi00] Object-Z is a conservative extension to standard Z, maintain-

ing the same syntax and semantics such that valid Z specifications are also

valid Object-Z. The extended notation adds classes and support for object-

oriented concepts such as inheritance and polymorphism.

3.1.5 VDM++

VDM++ is an object-oriented extension to VDM-SL. It was developed in the

1990’s by Larsen and Fitzgerald as an attempt to bridge the gap between

3.1. METHODS 19

traditional formal modeling and object-oriented design.

Being an extension to VDM-SL, VDM++ inherits many of its character-

istics. The main difference is in the introduction of classes. This is visible in

the structure of VDM++ specifications, which are written using classes and

inheritance for structuring rather than the modules used in VDM-SL. Inter-

estingly, there is also a visible difference in the syntax of VDM++, which

has shifted from the traditional mathematical notation to an ASCII-based

notation similar to a programming language.

VDM++ will be discussed in greater detail later in this thesis.

3.1.6 TCOZ

Timed Communicating Object Z, or TCOZ, is an example of a hybrid formal

method, composed of Object-Z and Timed CSP. Timed CSP is an extension

of CSP, which stands for Communicating Sequential Processes. CSP is a

notation developed by Hoare in the late 1970’s for modeling process con-

currency and interaction. Timed CSP extends this notation with primitives

for representing time. TCOZ integrates these two notations by identifying

Z schemata with CSP processes – for example, representing non-terminating

processes via Object Z classes and processes for state update events as oper-

ation schemata.

3.2. WAYS TO APPLY FM 20

3.2 Ways to apply FM

In the past, it has been common for formal methods to be represented as

an all-or-nothing approach to development. In fact, formal methods have

sometimes been equated with proving code correctness. However, this is far

from the case.

There are many different ways to approach formalization. A number of

case studies have shown that formal methods can be profitably applied to

systems without going so far as to prove every line of code. This section will

describe some of the ways in which formal methods have been applied. Some

examples of various levels of formalization will be given in the examination

of case studies in the next chapter.

3.2.1 Full formalism with proof

The most “heavy-duty” application of formal methods is the use of full for-

malism and proof, which is often thought of as the classic formal methods

scenario.[Hal90] In this approach, a system uses formal methods in the de-

sign, such as by writing specifications in a formal modeling language like

Z, as well as in the implementation. This is the stereotypical “every line is

proven” approach, in which all steps are formally justified.

In practice, it is uncommon for development teams to apply formal meth-

ods in this way – it is considered to be impractical for most projects. Few

of the published case studies involve this level of formalism. Without high-

3.2. WAYS TO APPLY FM 21

quality tool support, the demands of full proof could easily become unman-

ageable. Furthermore, case studies suggest that significant improvements to

reliability and correctness can be had without such extensive verification, so

lighter-weight methods are often judged to be more economical.

3.2.2 Full requirements or design

A more common application of formal methods is to use them in the re-

quirements and design of the system. By using a formal notation to write

the design or requirements of a system with an eye toward proof, system

architects can formally analyze these documents for correctness, consistency,

and completeness. For highly detailed formal models, this might include

proof and model animation, i.e. execution of the formal model for valida-

tion purposes. This is, of course, not possible with natural language design

documents.

Such application of formalism can be thought of as the high-level equiv-

alent of code proof. It allows system designers to construct proofs of system

properties such as security, which can be critical to the success of a project.

However, as with full formalization, the literature suggests that this level of

proof is not necessary to realize benefits.

3.2. WAYS TO APPLY FM 22

3.2.3 Semi-formal design or requirements

Another, less intensive way to use formal modeling languages for the design

or requirements of a system is for purposes of increased tractability. In this

scenario, designers use a formal notation to specify parts of the system, but

do so for the purpose of explicitness and clarity. In this scenario, large-scale

proof of correctness or consistency is generally not a goal.

The idea behind such application is to discover defects in the early stages

of the project. As Brooks has pointed out [Bro95], the most costly errors

in software systems are design errors detected during the coding or testing

phases of the project. In this approach, formal methods are used to subject

requirements and designs to greater scrutiny, with the intent of discovering

errors while the cost of fixing them is still low. The result of this is manifested

as fewer defects discovered during the coding, testing, and deployment phases

of the system life-cycle.

3.2.4 Targeted application

Formal methods can also be used in a very light-weight, targeted way. They

can be applied not to an entire system, but merely to selected subsystems,

with or without performing proof activities. For example, a development

team might apply formal specification to prove the security properties of

an access control system. Another example would be applying formalism

to add clarity and explicitness to a particularly devious or vaguely defined

3.2. WAYS TO APPLY FM 23

subsystem.

Such targeted application allows practitioners to avail themselves of the

advantages of formal methods only for those areas where it will be most help-

ful. This can include areas of requirements, design, or even code verification.

While this approach does not offer guarantees of correctness, it can help to

alleviate concerns that formal methods are too expensive or difficult to use

while still increasing system quality.

3.2.5 System review

Formal methods can also be useful in efforts to review, evaluate, or verify an

existing system. Though most practitioners recommend that formal methods

be incorporated into a project from the ground up, they can still be useful

when questions are raised about the reliability of an already developed sys-

tem. For example, the use of formal methods was deemed the route of least

expense in achieving the certification of the Darlington nuclear generator

station.

3.2.6 Test case generation

As with natural language specifications, formal specifications can be used for

test development. Black-box testing, the development of test cases from sys-

tem specification documents rather than implemented software, is a common

technique in software testing and quality assurance. Formal specifications

3.3. PLACES TO APPLY FORMALISM 24

aid in this type of testing, as they allow for more precise and explicit speci-

fications, making the test case design more straight forward.

In addition, the mathematical nature of formal methods makes them

susceptible to automated analysis. Thus, in some cases, it is possible to

automate the generation of test cases from the specification. The clearest

example of this is unit testing, where the test cases are generally small and

straight-forward. The pre- and post- conditions of formal specifications pro-

vide easy targets for test cases, as they provide natural boundary conditions

to verify.

3.3 Places to apply formalism

Just as different formal methods can be applied in different ways, so too can

they be applied to different parts of a system. This section will describe some

of the ways that formalism can be applied to the various portions of a system

and phases of system construction.

3.3.1 Code level

As previously discussed, one of the most obvious and well known ways to

apply formal methods is to program source code. A formal, mathematical

meaning can be defined for the various programming language statements,

independent of how they are implemented on a computer. This makes the

text of a program itself susceptible to mathematical analysis, allowing the

3.3. PLACES TO APPLY FORMALISM 25

program to be proven to be “correct,” i.e. to satisfy a given formal speci-

fication. This is exemplified by the axiomatic semantics of Hoare [Hoa69],

Dijkstra, Gries [Gri81], et al.

Typically, the purpose of code-level formalization is to ensure that the

code is free of semantic errors. For instance, with the semantics described in

[Gri81], programs can be annotated with pre- and post-conditions at various

points. Through the semantic rules of the language, it is possible to prove

whether, upon termination of the program (if, in fact, it does terminate), the

precondition entails the truth of the postcondition. Thus the correctness of

the program “specification” can be established.

3.3.2 System design

As discussed above, formal methods can also be used at the system design

level. Formal specification languages like Z or VDM-SL can be used to model

the components of a system. This allows designers to reason formally about

the system prior to implementation and makes it easier to spot contradictions

or ambiguity in the natural language specification documents.

Note that formal modeling languages can be applied to both high-level

design and detailed design. That is, they can be used to represent the com-

ponents of a system as well as the abstract data types and operations used in

implementation. System designers may even choose to use formal methods

at both levels, allowing them to prove that a detailed design is consistent

with a high-level design.

3.3. PLACES TO APPLY FORMALISM 26

3.3.3 Database design

As demonstrated by Barros [dB94a], it is possible to apply formal modeling

languages to the design of relational databases. Relational database con-

structs, such as tables, relations, and constraints, can be mapped to features

of notations based on logic and set theory, such as Z, allowing a database

schema to be subjected to formal analysis.

Such analysis is particularly of interest in the development of informa-

tion systems, which are often driven by data. In such applications, formal

modeling of the database schema can be used to capture complex data con-

straints and evaluate potential data models. Such an exercise can be useful

not only for formal system analysis, but also for design and documentation

purposes. Formal models can be built at a higher level of abstraction than

is available in standard SQL, allowing for simplification of complex entities

and non-relational constraints (e.g. triggers and stored procedures).

3.3.4 Requirements analysis

In addition to system design, it is also possible to use formal modeling meth-

ods to provide a formal description of certain system requirements. This

allows system designers to subject the requirements to consistency analysis

and the system design to coverage analysis, allowing them to detect errors at

a very early stage. It may also facilitate iterative requirements development

by providing a structured representation that can be systematically refined.

3.4. THE “METHODS” IN FORMAL METHODS 27

Of course, this is not practical or possible with all requirements. For

instance, a system may have user interface requirements which are difficult to

formalize and which would not offer much return on the investment. However,

as with other areas of formal analysis, it is not always necessary to formalize

all requirements to get beneficial results.

3.4 The “methods” in formal methods

Some researchers have quipped that “the problem with formal methods is

that they are just formal, not methods.” [CMCP+99] This section will ex-

amine some of the issues of methodology and areas of application for formal

methods.

3.4.1 System review

Formal methods of various stripes can be used for the methodical review of

an existing system. Analysts can translate an existing implementation or

design into a formal notation and subject it to consistency or correctness

analysis.

One example of this is [Pol01], in which the SAZ method, a combination

of the Z modeling language and the Structured Systems Analysis and Design

Methodology(SSADM), was used to review a GIS information system. The

use of formal modeling notations for this task enables the reviewer to demon-

strate inconsistencies in the system, determine if all requirements have been

3.4. THE “METHODS” IN FORMAL METHODS 28

met, and so forth.

While such application may be thought of as a classic scenario for formal

methods, it should be noted that such scenarios are not dominant in the pub-

lished case studies. Many of the most noteworthy case studies have involved

integration of formal methods into the development process, rather than us-

ing them for post hoc validation. Such early integration tends to uncover

errors earlier in the process, saving time and money, which is not possible

with after-the-fact analysis.

3.4.2 Automated tool support

Because formal methods are mathematical, they are at least theoretically

susceptible to automated analysis. That is, software can be used to do the

“heavy lifting” of consistency checking, discharging proof obligations, and

so forth. This leaves the engineers involved with more time to concentrate

on the development of the system, rather than getting bogged down in the

mathematics of verification. In this scenario, the application of formal anal-

ysis is worked into the development and becomes another step in the process,

similar to the writing and execution of unit tests in test-driven development.

One example of this type of development method is the SPARK language

and tools used by Altran Praxis. In the methodology employed by Praxis,

the supporting tool set can be viewed as the other part of the pair in the pair-

programming prescribed by Extreme Programming[AC03]. The programmer

develops his software with SPARK annotations, which the tool set can then

3.4. THE “METHODS” IN FORMAL METHODS 29

use for semantic analysis, theorem proving, information and data flow anal-

ysis, etc. With a machine handling the “grunt work” of the analysis, the

engineer is free to spend more time analyzing the results of that analysis.

3.4.3 Limited formalization

A common theme in modern formal methods use is that formalism is best

when it is targeted. There is often no need to formalize every part of a

system, as productivity and reliability gains can still be realized, probably

at lower cost, by selective application. In particular, formal methods use is

most often focused on the design and specification stage of a project, with

less emphasis being placed on code-level proof. In a limited application of

formalism, developers can identify the highest-risk or most critical sections

of a system and apply formalism to the design or implementation to increase

confidence in the reliability of the system.

One example of this application is Praxis’ development of the Multos

smart-card system[HC02]. In this project, Praxis developed a secure certifi-

cation authority for the system using formal methods. However, rather than

developing the entire system using formalism, they used Z and SPARK only

in targeted areas, i.e. the modules where reliability and security were critical.

For other parts, such as the graphical user interface (GUI) and the underlying

operating system, they used commercial, off-the-shelf (COTS) software.

3.4. THE “METHODS” IN FORMAL METHODS 30

3.4.4 Micro-methods

It has been suggested [Jac98] that the proper role for formal methods is not

so-called “constructive methods”, but rather “micro-methods” – small-scale,

highly focused applications. The argument is by analogy to traditional (e.g.

civil and industrial) engineering, where large-scale design innovation is rare.

Rather, many of the design details of an item to be produced are predeter-

mined – a bridge has to have a deck, and there are only a few acceptable

ways to build it. Likewise, in software development, starting completely

from scratch and coming up with a completely new way of doing things is,

or should be, relatively uncommon.

The idea is that formal methods should be the basis of software develop-

ment practice, not the practice itself, in the same way that mathematics and

physics are the basis of civil engineering, but do not make up the every-day

practice of it. Thus formal analysis should underly the methods and “rules

of thumb” used by software practitioners, giving them a scientific backing.

This approach could be viewed as somewhat similar to the application

of design patterns in object-oriented analysis and design. Systems may be

composed of various patterns or components which have been subjected to

formal analysis and can be combined in formally defined ways. Thus systems

would have a formal underpinning without requiring developers to spend a

great deal of time doing the formalization. However, while such an approach

has been suggested, it has not seen significant adoption in practice yet.

4 Applications of Formal

Methods

Traditionally, formal methods have been used primarily in the development

of security- and safety-critical systems. Such systems are typically defined

as ones in which failure can lead to catastrophic loss, such as loss of life

or compromising national security. The common thread in such systems

is that the cost of failure is extremely high and therefore the correctness

of the system is paramount. In such cases, a reasonable amount of extra

cost or effort to guarantee system correctness is considered acceptable, if not

essential. Formal analysis is a natural fit for such situations, as it allows for

demonstrating the correctness in a rigorous, systematic manner.

However, despite common misconceptions on this subject [Hal90], formal

methods are not used or useful only in the area of critical systems. They

are useful for any area in which the reliability of the system is important,

especially if the cost of fixing post-release bugs is high. Embedded systems

are an excellent example of this. Upgrading the software on a ROM chip in

31

4.1. CICS 32

a non-networked device is relatively difficult, requiring either a recall notice

or non-trivial action on the part of the device owner. Such updates can be

costly both financially and in their impact on a company’s reputation.

There have been many case studies on the use of formal methods in

industry published over the years. These cut across many industries and

include a variety of methods applied to systems of varying types and sizes.

This chapter will provide an overview of some of these case studies and discuss

their results.

4.1 CICS

CICS is the Consumer Information Control System, an on-line transaction

processing system, developed by IBM, with thousands of users world-wide.

CICS was originally released in 1968 and was developed using conventional

software engineering methods. For CICS 3.1, released in 1990, IBM rede-

veloped several parts of the system. They worked in conjunction with the

Oxford University Programming Research Group (PRG) to apply formal

methods to the effort.

As their method of choice, the project team used primarily the Z notation.

Z was used for higher-level specification and design work, but was not mapped

down to the detailed design or code in a systematic way. Rather, some of

the code was formalized using a variant on Dijkstra’s guarded command

language. In general, there was no formal relationship between the high-

4.1. CICS 33

level Z specification and this guarded command code and there were no large

scale proofs attempted. [FF96]

The CICS effort included the development of new subsystems and the

redevelopment of existing subsystems. This included 268,000 lines of new and

modified CDL (IBM’s Common Design Language) code. Of this, 37,000 lines

were based on Z specifications, while another 11,000 were partially specified

in Z. The Z specifications themselves occupied approximately 2,000 pages.

The results of this project were hailed as a success for formal methods,

winning IBM and Oxford the UK Queen’s Award for Technological Achieve-

ment [BH95b]. IBM reported that the “Z code” had 2.5 times fewer defects

than the conventionally developed code. They also reported a 9% savings in

the overall project cost, which was attributed to the use of formal methods.

However, it should be noted that [FF96] has raised questions about

the legitimacy of these claims. In particular, the paper points out that the

publicly available data does not provide a basis for the precise claims of

success. For example, it is unclear exactly what comparison leads to the 2.5

times figure and it appears that the 9% savings does not include post-release

defects. So while CICS may well have been a success, it is not clear how

large a success.

4.2. FM VS. CMM EXPERIMENT 34

4.2 FM vs. CMM experiment

In a 2001 article, Smidts et al. described an experiment pitting two develop-

ment teams against each other. [SHW02] Both teams worked independently

to develop a system to the same specification, with one team employing for-

mal analysis methods and the other using the more conventional Capability

Maturity Model (CMM) level 4 development methodology. Both teams were

given what they agreed was a “generous” schedule and funding as well as

unlimited access to the customer for clarification of the specification and the

ability to negotiate for a reduction in scope if required. The deliverables

were to include C++ source and object code along with documentation on

process, design, and testing.

The system to be designed was the Personnel Access Control System

(PACS), which controls access to buildings using a swipe-card system. In-

cluded with the specification for the system were reliability guidelines. The

system was to have reliability of 0.99/transaction for level 1 failures and 0.90

for level 2 failures. A level 1 failure was defined as a state in which the soft-

ware is unresponsive or incorrectly processes cards or PINs, either allowing

or disallowing entry when it should not. A level 2 failure was defined as one

for which there was an operational work-around, e.g. someone going through

the entrance too slowly and requiring a guard to override the system to keep

the gate opened. The reliability of the delivered systems was tested by an

outside lab.

4.3. LIGHT-WEIGHT REVIEW 35

The formal methods team in this study chose to employ Haskell and

Specware as their primary tools. Haskell is a purely functional programming

language with a number of advanced features. Specware is a specification and

proof environment which allows users to write specifications in the Metaslang

formal specification language, refine them, and then automatically generate

C, Java, or Lisp source code for the application. In this case, the developers

actually chose to build a prototype system in Haskell, automatically convert

that to a Specware specification, and then use the code generation features

of Specware to create the C++ source code.

In the final analysis, neither team was able to fully meet the specification.

The measured reliability for the product delivered by the CMM4 team was

0.56 for level 1 flaws and 0.97 for level 2 flaws, while the formal methods

team achieved rates of 0.77 for level 1 and 0.65 for level 2 flaws. So while the

CMM team did meet the reliability requirement for level 2 defects, the formal

methods team was significantly more reliable with respect to level 1 flaws –

though they still came nowhere near the required reliability. However, given

the unorthodox approach of the formal methods team, it is unclear if their

performance is indicative of any general trend.

4.3 Light-weight review

One example of the use of formal methods in a non-critical system is that

of [Pol01], which describes the application of a light-weight formal review

4.4. PONDAGE POWER PLANTS 36

method to a GIS information system. The system in question was an Oracle

database used to store topographical and tourist information.

This case study involved creating a formal Z specification from a partial

structured system specification. The analysis used a technique known as

SAZ, a combination of the Z specification language and SSADM, the Struc-

tured System Analysis and Design Method. This resulted in a Z specification

that was more structured than typical Z.

The formal review resulted in the addition of a number of constraints to

the system specification. However, the problems discovered were not espe-

cially serious, i.e. the cost of fixing them would not have been outrageous.

It was noted that these issues may have been serious for a more public,

higher-profile system.

Overall, this case was considered a successful application of formal meth-

ods, but did not provide evidence of a clear and compelling benefit. The

study was somewhat subjective and hard to generalize, as well as lacking a

base-line for comparison with other methods, making it a sub-optimal test of

formal methods. However, it did at least establish that such review methods

are feasible and useful for non-critical systems.

4.4 Pondage power plants

In [CMCP+99], an application of semi-formal methods to the development

of a Pondage power plant is described.

4.5. RADIOTHERAPY MACHINE 37

This case study used a formal specification language known as TRIO and

a “double-spiral” evolutionary development method. This involves starting

from a natural language specification which is revised into a partial TRIO

specification and then converted to the final specification through a series of

refinements and verifications. The methods are referred to as semi-formal

because they do not require that all parts of the system be formalized.

The authors of this case study conclude that the use of formal meth-

ods consistently results in discovering more defects in the specification stage,

which ultimately leads to lower costs. This is based on 10 years of expe-

rience, including projects such as a digital energy meter, dam static safety

elaboration unit, Pondage power plant control system, the Open DREAMS

project, a traffic light control system, and a flight control system.

In the case of the Pondage power plant, the study concludes that the

system developed with TRIO cost 15% less than a system developed with

more conventional methods. It is noted that, in the price breakdown, the

TRIO development spent twice as much on the design and validation stage,

but less on all the other development stages, resulting in the net 15% savings.

4.5 Radiotherapy machine

A 2004 study by Dennis et al. [DSRJ04] dealt with the use commutativity

analysis to find errors in radiation therapy machine. The study involved

translating a design specification originally written in OCL (the UML Object

4.6. INTERNATIONAL SURVEY 38

Constraint Language) into the Alloy formal specification language. The use

of the Alloy tool set allowed researchers to automate this analysis. Such

automation which was not possible with the current OCL tools.

This study examined commutativity of operations, i.e. the effect of chang-

ing the order in which operations were. The system was was designed to be

single-user and single-threaded, and so had no notion of concurrency – all

commands were executed in series. However, the system had multiple control

panels located in different rooms. Thus it was possible for two users to issue

different commands at the same time without each other’s knowledge. In

some cases, executing these commands in the wrong order could leave the

system in an undesirable state.

The analysis successfully uncovered several operation pairs that did not

commute. While these are not necessarily errors, having non-commutative

operations could put the system in an ambiguous state. Users might not be

able to predict the outcome of an operation based on the observed system

state, which could result in a negative impact on patient care.

4.6 International Survey

In 1993, Craigen et al. released a two volume report on applications of

formal methods. [CGR93] The report, which details the results of studies on

several large, high-profile formal methods-based projects, is one of the most

comprehensive studies on formal methods.

4.6. INTERNATIONAL SURVEY 39

Step Description Classes KLOC
1 Management tools 153 25
2 Tool-writers class library 99 12
3 Tools (5 total) 81 8

Table 4.1: SSADM code break-down

Requirements 7%
Specification 29%
Development & unit testing 50%
Testing and delivery 14%

Table 4.2: Total effort on SSADM by phase

4.6.1 SSADM

In 1987, Praxis High Integrity Systems began working on a Computer Aided

Software Engineering (CASE) tool set to support the Structured System

Analysis and Design Method (SSADM). The project involved the creation of

an infrastructure, i.e. a framework, to support the method as well as a toolkit

to support actual development. The infrastructure was formally specified in

Z and implemented in Objective C.

Of the 45KLOC in system (where KLOC denotes “thousand lines of non-

empty, non-comment code), 37KLOC were specified in the 350 pages of Z.

This included 550 schemata and 280 top-level operations. The code break-

down is shown in table 4.1. Steps 1 and 2 collectively took 2235 work days

to complete, while step 3 took 483. The estimated effort was 6400 work-

days, based on an assumption of 1120 function points. The percent of effort

expended in each phase of the project life-cycle is given in table 4.2.

The project used only a single tool to support the use of formal methods:

4.6. INTERNATIONAL SURVEY 40

a prototype parser and type-checker obtained from the FORSITE project.

This was the only tool readily available at the time and was judged to be

just barely adequate.

Several factors make it difficult to draw conclusions about formal methods

based on this project. The first factor is the fact that, for reasons outside the

scope of Praxis’s work, the customer decided not to use the final product.

This makes it impossible to assess the long-term effects of the use of formal

methods on maintenance, as no maintenance was done. Second, while Praxis

claimed that the project was delivered within budget, no data was collected

on the price breakdown within the project. Thus it is not possible to evaluate

the cost effectiveness of formal methods.

Praxis did collect data on productivity, as per the client’s requirement.

For this, they used the COCOMO model, which predicted productivity of 11

lines of code per day. The measured productivity under this model was 17

lines per day. While this supports Praxis’ claim of increased productivity due

to the use of formal methods, Craigen et al. regard the COCOMO data as

not that meaningful, owing to the difference between the development model

assumed by the method and that actually used in the project.

4.6.2 Inmos transputer

In 1985, Inmos Ltd. began a project to use formal methods for the design of

microprocessors, in particular their Transputer family of 32-bit Very Large

Scale Integration (VLSI) circuits.

4.6. INTERNATIONAL SURVEY 41

There were three interrelated projects at Inmos. The first used Z to cre-

ate a specification for the IEEE floating point standard, the second used Z

and Occam to design scheduler for T800 Transputer, and the third used the

Communicating Sequential Processes (CSP) and Calculus of Communicat-

ing Systems (CCS) to design the Virtual Channel Processor of the T9000

Transputer.

The results were generally positive. Inmos met their quality and time-to-

market goals. They also saved an estimated 3 months of development time

on the T800, saving $4.5 million. The project also won the Queen’s award.

4.6.3 Darlington nuclear generator

The Darlington Nuclear Generating Station (DNGS) represents a retrospec-

tive formalization, i.e. reverse engineering. In this case, an existing software

system was subjected to formal analysis in order to gain confidence in its

reliability.

The system in question was the DNGS shutdown control system. It was

developed by AECL for Ontario Hydro, the operator of the DNGS. Formal

methods were not used at all in the development of the control system, but

were introduced after development had been completed. This course of action

was taken because Ontario Hydro was having difficulty obtaining a license

from the Atomic Energy Control Board (AECB) of Canada due to questions

about the reliability of the system.

This project did not use a specific formal method. The requirements

4.7. VARIOUS PRAXIS PROJECTS 42

specifications were based on the Software Cost Reduction (SCR) style and

the actual formalization used tabular representations. The Software Design

Specification (SWDS) was formulated mathematically in a tabular format.

The function tables were also developed for the various routines in the system,

with linkage tables describing dependencies. Verification consisted simply of

showing that the SWDS and function tables were consistent. No tools or

automation were used in the formalization effort - all proofs were constructed

by hand.

As a result of the formalization effort, the AECB found that the software

shutdown control system was no longer a barrier to licensing. However, they

stated that the system was not suitable for long-term use and that it would

have to be redeveloped. The cost of the verification was $4 million, 25% of

the $16 million cost of the total cost of the shutdown system.

4.7 Various Praxis projects

Altran Praxis (formerly Praxis Critical Systems and Praxis High Integrity

Systems) has published a large number of papers on projects they have done

using formal methods. Praxis has successfully used a relatively wide range

of formal methods, including Z, VDM, CSP, and SPARK. This section will

examine some of the case studies published by Praxis and the results of those

projects.

4.7. VARIOUS PRAXIS PROJECTS 43

4.7.1 Multos CA

In [HC02], Hall and Chapman describe the development of the Multos-CA, a

certification authority for the Multos smart card scheme, by Praxis Critical

Systems. This project was noteworthy in large part due to the stringent

security requirements mixed with the requirement for the use of commercial,

off-the-shelf (COTS) software.

The system was developed using a “correctness by construction” ap-

proach. This entails collecting requirements and refining them down through

a series of high and low level designs. The Reveal method was used for

requirements engineering.

Praxis used a number of formal methods in the development process. Z

was used to develop both a top-level formal specification and a formal security

policy model. A Z specification was also produced for the module used

to manage cryptographic keys. A process model was developed using CSP

(Communicating Sequential Processes) to ensure the correctness of threading

and inter-process communication in sensitive code. For the coding phase,

these models were translated into Ada95 tasks, rendezvous, and protected

objects.

The system was coded in multiple programming languages, using a “right

tool for the job” approach. Security sensitive portions of the system, ac-

counting for about 30% of the code, were written using SPARK, Praxis’s

statically verifiable subset of Ada95. Another 30% of the system consisted

of custom inter-process communication (IPC) mechanisms and API bind-

4.7. VARIOUS PRAXIS PROJECTS 44

ings implemented in full Ada95. Other portions, such as the user interface,

were implemented in C++ and were kept as separated as possible from the

security-sensitive code. This dichotomy was due in part to the customer

requirement for the use of a commodity operating system, Windows NT 4.

Overall, the certification authority was a success, meeting requirements

and budget constraints. The average overall developer productivity for the

project was 28 lines of code per day, which compares well with industry

averages. The defect rate was remarkable as well. In the first year after

system acceptance, only 4 faults were discovered. That makes for a defect

rate of 0.04 defects per thousand lines of code.

4.7.2 SHOLIS

SHOLIS is the Ship Helicopter Operating Limits System. It is a system,

developed by Praxis Critical Systems, to aid in the safe operation of naval

helicopters. The system contains a database of SHOLs (Ship Helicopter

Operating Limits) and compares these to sensor readings. When a limit is

violated, the system raises visual and/or audible alarms. It was developed to

SIL4 (Safety Integrity Level 4) as per UK Defense Standard 00-56. [KHCP00]

The SHOLIS was built using Z for the design phase and SPARK Ada for

coding. It used a design cycle consisting of:

1. English requirements (about 4,000 statements).

2. Software Requirements Specification (SRS) in English and Z (about

4.7. VARIOUS PRAXIS PROJECTS 45

300 pages).

3. Software Design Specification (SDS) in English, Z, and SPARK.

4. Code in SPARK.

5. Testing.

The final system comprised about 133,000 lines of code total, which included

13,000 lines of Ada declarations, 14,000 lines of Ada statements, 54,000 lines

of SPARK flow annotation, 20,000 lines of SPARK proof annotation, and

32,000 blank or comment lines.

This project made extensive use of proof, both at the Z and SPARK level,

the use of which was judged to be quite successful. In total, 150 Z proofs

were carried out in 500 pages, including 130 at the System Requirements Spec

level and 20 at the System Design Spec level. About 9000 SPARK verification

conditions were generated, with 3100 for safety and functional properties and

5900 from the RTC generator. Of these 6800 were automatically discharged

by the SPARK Simplifier and the rest were discharged manually with the

SPARK Proof Checker or with informal reasoning.

4.7.3 Lockheed C130J

Praxis also participated in Lockheed’s project to performed a major upgrade

to the Mission Computer (MC) system on the Hercules II air-lifter, also

known as the Lockheed C130J. The system was developed by multiple con-

4.7. VARIOUS PRAXIS PROJECTS 46

tractors to satisfy the civil certification DO-178B and UK Defense Standard

00-55. It used semi-formal specifications written with the Consortium Re-

quirements Engineering (CoRE) method and Parnas tables. The core of the

MC, which accounted for approximately 80% of the total system, was written

in SPARK Ada. This code was subjected to the static analysis supported by

the SPARK tool set, including semantic checking, data- and information-flow

analysis, and program proof. [Ame02]

Lockheed claimed a number of improvements due to the use of SPARK.

Among them were:

• Code quality increased 10 times over typical code developed to DO-

178B Level A.

• Developer productivity increased by 4 times compared to previous,

comparable projects.

• Development costs were half that of typical non-safety critical code.

• Re-use of the development process led to “further productivity improve-

ment of four” on the C27J air-lifter project.

Another significant conclusion of the study is that SPARK code was found

to have only 10% of the errors of traditional Ada, which itself had 10% of

the errors of C code. Lockeed reported that the static analysis supported by

SPARK decreased Modified Condition/Decision Coverage (MC/DC) testing

costs by 80% from the expected testing budget. In addition, there was no

4.7. VARIOUS PRAXIS PROJECTS 47

statistically significant difference found between the residual error rates of

DO-178B Level A and Level B code, raising questions about the efficacy of

MC/DC testing.

4.7.4 SIL4 failure

In contrast to the successful application of SPARK in the Hercules II, Chap-

man gives a brief example of a less successful application of SPARK[Cha00].

This unnamed project had the goal of developing a SIL4-compliant real-time

embedded control system. It used an object-oriented design style driven by

a CASE tool. The system was not initially developed with SPARK, but was

converted to SPARK after testing in order to meet regulatory requirements.

In this case, the attempt to “SPARK-ify” the code after the fact proved

fatal. The CASE tool generated a “flattened” code structure, with all state

stored at the global level. This goes against good SPARK practice. In

addition, some of the generated code violated the semantic rules of SPARK,

requiring code changes late in the development cycle. At this point, progress

slowed and the system failed to meet requirements.

4.7.5 CDIS

The Central control function Display Information System (CDIS) is an Air

Traffic Control (ATC) information system developed for UK Civil Aviation

Authority to display information to air-traffic controllers. It was developed

4.7. VARIOUS PRAXIS PROJECTS 48

under contract by Praxis Critical Systems using a number of different formal

methods. [PH97]

CDIS was designed using VDM to define the system data and operations

on it. The definition proceeded in a top-down fashion, after it became ap-

parent that the initial idea of using VDM to refine the low-level design was

not appropriate. The system also used CCS, the Calculus of Communicating

Systems, and entity-relationship modeling.

The completed system consisted of approximately 197,000 lines of C code,

accompanied by 1200 pages of specification documents and 3000 pages of

design documents. The total effort for the project was calculated at approx-

imately 15,500 person-days. Average developer productivity was 13 LOC/-

day, which was better than the average predicted by the Cocomo estimation

method and at least as good as comparable projects undertaken by Praxis.

During development, the fault rate was 11/KLOC, with the final product

having 0.75 faults/KLOC in the first 20 months after delivery.

5 Controversy and debate

over applicability

Over the years since formal methods research began, there has been much

debate over their usefulness and applicability in practice. This chapter will

examine details of some of the arguments for and against the use of formal

methods.

5.1 Why are formal methods not used?

While formal methods are used in industry, they have not enjoyed wide

adoption and remain a relatively niche area of software development. It is not

entirely clear why formal methods have failed to achieve any real mainstream

success. There have been many case studies published documenting the

successful use of formal methods, and many papers written by evangelists

addressing myths and misconceptions. Despite this, formal methods have

not enjoyed anything approaching wide adoption.

49

5.1. WHY ARE FORMAL METHODS NOT USED? 50

By way of contrast, there has been significant uptake of some so-called

semi-formal development methods. The prime example of this is UML, the

Unified Modeling Language. UML is a graphical notation, designed and

maintained by the Object Management Group (OMG), for describing various

aspects of object-oriented systems. It has become the de facto standard for

object-oriented modeling.

The UML is “semi-formal” in the sense that the UML standard deter-

mines valid syntax for UML diagrams, but does not provide for the meaning

of those diagrams. For instance, a UML class diagram can describe a class’s

member variables, methods, and relations to other classes, but it provides no

formal way of stating what the class or its methods do. There is no notion of

pre-conditions, post-condition, state invariants, and so forth. (Such features

are available in the OCL, but that is a more recent development and is not

as widely used as traditional UML diagrams.)

Despite the dominance of object-oriented programming in industry, use of

UML is system design is still far from ubiquitous. Estimates vary, but surveys

have suggested that UML is used in anywhere from 15% [Sli04] to 34% [Zei02]

of software projects. While hardly universal adoption, this at least indicates

that UML has become a mainstream development tool. By contrast, formal

methods are still regarded as a niche technique, with studies indicating no

evidence of widespread uptake in the software industry in general.

There are a number of possible factors contributing to the relative lack

of acceptance of more formal methods. Three of the more commonly men-

5.1. WHY ARE FORMAL METHODS NOT USED? 51

tioned explanations – tool support, method complexity, and general lack of

awareness – are discussed below.

5.1.1 Tool support

There is an apparent lack of tools to support formal methods, at least com-

pared to more conventional software development tools. There are many

tools available, but according to [CGR93] and others, there is not a good

range of tools available. In particular, [CGR93] cites the lack of mid-range

commercial quality tools. There are a few large-scale commercial-quality en-

vironments and a quite a few small, research-quality tools, but not much in

between.

While the situation has undoubtedly improved since the survey by Craigen

et. al., formal methods tool sets are still not widely used in every day soft-

ware development. The positioning of formal methods tools does seem to

be improving, as there are an increasing number of cases where the tools

are integrated into popular software development tools and environments.

Examples include the Object-Z editor released by the Community Z Tools

(CZT) project, which is built as a plug-in to the jEdit text editor; the Over-

ture project tools, built on the Eclipse platform; and the symbolic execution

debugger of the KeY project, which is also an Eclipse plug-in. However,

this trend appears to be driven primarily by the formal methods community,

rather than by the tools vendors directly. The projects appear more oriented

to supporting existing users of formal methods than driving new adoption.

5.1. WHY ARE FORMAL METHODS NOT USED? 52

5.1.2 Method complexity

Formal methods are often perceived as being too complex. They use esoteric

notation, mathematical reasoning, and other techniques that are not staples

of traditional software development. These are perceived as a burden to de-

velopers, who may have spent years writing perfectly good software without

them.

This burden seems especially heavy when applied to non-critical systems.

While it is easy to justify the extra time and effort of rigorous mathematical

analysis when failure can cost lives or ruin a company, the argument is more

difficult when the cost is simply delay or embarrassment. In addition, the

development curve of formal methods traditionally shifts more effort into

the specification and design phase, which conflicts with recent trends toward

“agile” methods that favor early implementation.

However, as Bowen and Hinchey point out in [BH05], the inherent com-

plexity of many formal methods is not really that great. For example, the Z

and VDM-SL notations do not require any particularly advanced mathemat-

ical ability. They require only an understanding of set theory and predicate

logic, both of which are typically required learning in a undergraduate pro-

gram in computer science. So clearly the mathematics required is not outside

what is manageable by the average professional programmer.

Similarly, while the unfamiliar notation employed by many formal meth-

ods may be initially daunting, there is no inherent reason why this ought to

be a barrier to entry. The field of software development is overflowing with

5.1. WHY ARE FORMAL METHODS NOT USED? 53

esoteric languages and notations. For instance, the average web developer is

currently required to be proficient in at least five languages: HTML, CSS,

SQL, JavaScript, and a server-side programming language such as Java or

PHP. Of these, only the final two might bear any meaningful resemblance

to one another, depending on the server-side language. Another obvious ex-

ample is XML, which, while relatively simple on its own, has given rise to

innumerable customized schema (RSS, ATOM, XSD, WSDL, SOAP, etc.) as

well as associated notations such as XSL and XPath. So while unfamiliarity

of notation may be a factor, given the proliferation of notations already in

widespread use in industry, it does not appear obvious that it should be the

deciding factor.

Despite this, complaints about the complexity of formal methods are not

entirely unfounded. While the mathematical reasoning required to use mod-

eling languages like Z is certainly not beyond the education of an undergrad-

uate computer science student, it is worth noting that such training is far

from universal among professional software developers. There are many pro-

fessional software developers who are self-taught and did not take university

computing classes. According to the Bureau of Labor Statistics [BoLS09],

in 2006 only 68% of Computer Programmers and 80% of Computer Soft-

ware Engineers held a Bachelor’s degree, and not necessarily in computer

science or mathematics. So, depending on an organization’s staffing, a sig-

nificant percentage of the development staff may have no prior exposure to

formal logic and set theory and bringing the team up to speed may require

5.2. REASONS TO USE FORMAL METHODS 54

a non-trivial training investment.

5.1.3 Lack of awareness

Many software developers simply are not aware of formal methods. While

formal methods classes are taught at the graduate and undergraduate lev-

els, they are not necessarily a core requirement in most computer science

curricula. Furthermore, they are not often written about outside academic

circles. Popular computer programming and software development books do

not typically contain any extended treatment of formal methods – or, indeed,

any treatment of them at all.

In addition, what education there is about formal methods is not always

sufficiently broad to represent the plethora of options available. In the United

States, particularly, classes often tend to focus on a single aspect, such as

code verification. In the literature, however, more focus has been placed of

formal specification methods in recent years.

5.2 Reasons to use formal methods

Formal methods practitioners and proponents have advocated the adoption

of formal methods for a number of reasons. These vary widely and impact

software projects in different ways and at different levels.

5.2. REASONS TO USE FORMAL METHODS 55

5.2.1 Increased reliability

The most obvious reason to use formal methods when developing software

is to increase reliability. In fact, this was the original promise of formal

methods – to prove that systems were free of defects. And while such Utopian

visions have fallen out of favor, the literature does support claims of increased

reliability. Use of formalism in design and/or implementation has been linked

to fewer defects, both at the code and design level. The case studies in the

previous chapter, and numerous others in the literature, provide a great

deal of support for this, both through anecdotal evidence and quantitative

evidence from project data. While it is not generally possible to say how

much of the reliability increases seen in these projects was due to formal

methods, it seems safe to conclude that there is a relationship.

A number of cases have also demonstrated the usefulness of formal analy-

sis in detecting defects through post hoc review of systems, including [DSRJ04]

and [Pol01]. While such reviews do not typically carry the other benefits

attributed to formalism, they do offer some value as an analysis tool inde-

pendent of the rest of the development process. They also provide a clear

demonstration that formal methods can be effective in detecting system de-

fects.

5.2. REASONS TO USE FORMAL METHODS 56

5.2.2 Increased tractability

Increased system and code tractability is another good reason to use formal

methods in development. Since formal notations are mathematical and un-

ambiguous, unlike natural language, they allow for greater precision when

specifying or describing system behavior. This allows the system specifi-

cation to be more easily validated by the development team or by outside

regulators.

The use of formal modeling languages like Z and VDM-SL can provide the

same type of benefits as less formal techniques such as UML. They provide a

more abstract language for the description and design of the system which can

be simultaneously more explicit that natural language and easier to modify

than code. In short, they provide a convenient language for system design

and specification. This makes them useful as a communication tool whether

or not their full mathematical precision is exercised.

5.2.3 Decreased cost

A number of practitioners have claimed that the use of formal methods can

actually lead to an overall reduction in system cost. In such cases, the cost

of adding formal methods to the design phase of the project is more than

made up for by savings in the development and validation phases. The net

effect is a shifting of the cost curve for the project, with more effort being

spent in the requirements and design phase and less in the implementation

5.2. REASONS TO USE FORMAL METHODS 57

and testing.

There are several examples of this in the literature. The most prominent is

the CICS redevelopment by IBM, which claimed a 9% cost savings due to the

use of Z. Another example is the use of the TRIO method in the development

of pondage hydroelectric power plants, which [CMCP+99] reports resulted

in a 15% savings over the traditional approach.

The SPARK case studies from Praxis also serve as good examples of

savings. In a number of case studies, Praxis has been able to attribute the

use of SPARK and other formal methods to a decrease in overall project cost

from projected budget. The use of formalism allowed them to find errors

faster and so take a significant amount of effort out of the usually costly

debugging and testing phase of the project.

5.2.4 Proof of quality

Formal notations, being mathematical in nature, are susceptible to proof.

Proof provides more confidence in correctness than testing alone and there-

fore is helpful in providing evidence of quality. This is particularly useful for

satisfying quality concerns of third parties, such as regulatory agencies.

Perhaps the most pronounced case of this is the Darlington Nuclear Gen-

erator Station. In this case, the use of formal methods to describe the soft-

ware shutdown system provided greater assurance of the correctness of the

system, convincing the regulatory committee to certify the station. This

saved a great deal of time and money over redeveloping the system to the

5.2. REASONS TO USE FORMAL METHODS 58

committee’s satisfaction.

However, proof of correctness, security, or other properties can be use-

ful in many contexts. For instance, [SW03] suggests that one such context

might be e-commerce systems. By using formal methods to model the secu-

rity properties of the system, e-commerce providers would be able to provide

verifiable demonstrations of security. In light of the high-profile data leaks

that have surfaced in recent years [DS09], such proof could be a useful busi-

ness tool in addition to improving overall system quality. It might also serve

a useful role in regulation, both by government and industry, by establishing

more meaningful metrics for the demonstration of system security.

5.2.5 Advancement of software engineering

One novel argument for formal methods is that they are required for the

development of a genuine discipline of software engineering. Formal methods

can be considered the mathematics of computer programming. And since

“real” engineering is based on mathematics, so must be software engineering.

Holloway makes this argument in [Hol97]. He presents it as a persuasive

technique to encourage the adoption of formal methods among software engi-

neering practitioners. It is described as a remedy to the apathy or antipathy

of many developers toward formal methods, given that experiments and case

studies have adequately demonstrated the efficacy of such methods.

It should be noted that increasing the quality of software engineering as a

discipline does not necessarily entail the adoption of full fledged formal meth-

5.2. REASONS TO USE FORMAL METHODS 59

ods for all or even most software projects. Nor does it entail the majority of

developers becoming experts on any given formalism. The discipline could

benefit simply by providing building-blocks based on formal methods. The

idea would be to give a formal basis for software engineering without forcing

unnecessary formalism on developers, much as engineers use reference mate-

rial based on hard physics, but seldom do the experiments or calculations on

which those references are based.[Jac98]

5.2.6 Generation of test cases

Use of a formal model of a system can reveal possible areas for problems,

but can also be exploited for other practical uses. One such example is the

generation of test cases. This can, theoretically, be carried out automati-

cally, owing to the fact that formal specifications are susceptible to machine

analysis. However, a formal model or specification can also be useful to pro-

grammers or quality assurance professionals generating test cases manually,

as it is the authoritative source for how the system is supposed to work.

Formal specifications also make more explicit areas such as initial and fi-

nal states, boundary conditions, other common starting points for test case

design.

5.3. ARGUMENTS AGAINST FORMAL METHODS 60

5.3 Arguments against formal methods

Despite the above, there are a number of arguments that are commonly raised

against the efficacy or applicability of formal methods. Several of these are

described below.

5.3.1 Formal specifications are not generally meaning-

ful

One objection to formal specifications is that a specification should express

the customer’s understanding of the desired system. In other words, specifi-

cations and requirements documents are, by their very nature, an expression

of the informal goals for the system to be constructed, and so must be im-

mediately understandable in order to be useful.[CF98] This rules out formal

specifications a priori.

This objection, by its very nature, hinges on the specification reader’s

understanding of the purpose of the document. It is obvious that, at the

highest level, a specification, whether it be a description of the proposed

system or of customer requirements, must be a natural-language document.

For example, it is difficult to imagine how a business requirements document

could be written using a formal notation. Such requirements define the reason

for creating the system, which in all likelihood are not amenable to formal

analysis.

However, as noted by Bowen and Hinchey [BH95a], adopting formal devel-

5.3. ARGUMENTS AGAINST FORMAL METHODS 61

opment methods does not preclude the use of other, more traditional meth-

ods. A formal specification is not the same kind of document as a natural

language specification, and so one should not be used as a replacement for

another. The purpose of a formal specification is to refine a natural language

specification, adding a greater degree of precision which can expose subtle

design problems. It serves as a compliment to a natural language description,

not a replacement.

5.3.2 Inapplicability of FM to certain areas

In [EB04], the authors argue that formal design methods are simply not useful

or appropriate for some problem domains, with the particular example being

large Multi-Agent Systems (MAS). The argument is essentially that, in many,

if not most cases, IT environments are a complex and rapidly changing mish-

mash of interconnected systems, i.e. a “messy” environment. This makes it

difficult, and in some cases impossible, to consider a system in isolation

and perform a proper formal analysis and specification. And even if it is

possible, the goal of the system may very well change several times before

the specification process can even be finished.

Similar arguments may be applied when contrasting formal methods with

agile development methods. The purpose of agile methods are to respond

to change, whereas, at first blush, formal specification methods appear an-

tithetical to change. The purpose of a specification, after all, is to describe

the workings of a system. When the system requirements change rapidly

5.3. ARGUMENTS AGAINST FORMAL METHODS 62

and often, the value of detailed specifications, formal or otherwise, becomes

questionable. When the system design is a work in progress and goals can

change on a weekly basis, the perceived value of specification in general is

decreased.

The same can be said for small, simple projects which are not necessarily

subject to rapid change, but are, rather, fairly self-explanatory. In such cases,

it might be argued that a formal model or specification is overkill. That is,

an informal, or even implicit, specification may be “good enough” for such

a project. If the requirements are modest and already well understood, it

may not be clear that a formal treatment of the system would be worth the

effort involved. The developer might have it implemented by the time the

specification was finished!

In its general form, this argument is not especially controversial. Though

there are many documented cases successful formal methods use in industry,

most advocates admit that that formal methods are not universally appro-

priate. The real question is not whether they are always useful, but in what

circumstances they are useful and to what extent.

5.3.3 Expensive

Perhaps the most obvious objection to formal methods, particularly from a

management standpoint, is that they are expensive. Successful implementa-

tion of a formal methods project in an organization can require the purchase

of supporting tools, training for engineers and designers, and time and effort

5.3. ARGUMENTS AGAINST FORMAL METHODS 63

to integrate formal methods into the existing development process, among

other expenses. This is on top of the time spent using formal methods and

the ramp-up time to become productive. Once the project gets going, there is

still the concern that adding formalism into the development will slow down

the overall process.

There is a great deal of truth in this objection. Bringing an organization

up to speed on formal methods, particularly if they will be used extensively, is

a very expensive process [BH95b]. There is a great deal of training required

in order to use them successfully, and between developer time, consultant

fees, and supporting software, the costs can quickly add up.

However, it should be noted that this is not fundamentally different from

the ramp-up expenses associated with adopting any other new tool or tech-

nique. Whether the organization is adopting .NET or Extreme Program-

ming, there is nearly always some expense in terms of training and support

while the development team becomes comfortable with the new way of doing

things. The main difference with formal methods appears to be one of degree

rather than kind, i.e. formal methods are typically more alien to developers

than a new programming language or development framework, and so may

require more training than other methodologies and tools.

While ramp-up costs may be significant for formal methods use, it is a

one-time cost. The vast majority of software development tools and method-

ologies place their focus on long-term cost savings. There is considerable

support in the literature that formal methods provide real benefits in this

5.3. ARGUMENTS AGAINST FORMAL METHODS 64

area, increasing system reliability, and thereby decreasing long-term support

and maintenance costs, while simultaneously maintaining or even decreasing

initial development costs. So while formal methods may not be appropri-

ate or cost-effective for one-time use on a particular project, the evidence

suggests that the initial investment can pay off over many projects.

6 Applying Formal Methods

in Non-Critical and

Information Systems

6.1 Lessons

After several decades of use in industry, a number of lessons about the appli-

cation of formal methods have emerged. While many of these were gleaned

largely from experience with critical systems, they appear to be applicable to

software projects in general. Some of the major lessons are outlined below.

6.1.1 Long-term investment

While it is often perceived that formal methods will increase the cost of a

project, this need not be the case. A number of case studies by Praxis High

Integrity System and others show that formalism can be applied to a system

without increasing the cost and, in some cases, actually decreasing it.

65

6.1. LESSONS 66

However, it is clear from the literature that such benefits are not accrued

simply by the adoption of formal methods. Praxis in particular has published

a large number of case studies involving formal methods use over the course

of many years and has shown that a degree of expertise in the judicious

use of formal methods and their integration into the development process is

necessary to derive the full benefit of their adoption. Furthermore, it is not

at all clear that short term adoption, e.g. for a single project, will necessarily

confer any benefit at all in terms of cost.

This suggests that the most fruitful approach to formal methods for an

organization is to integrate them into the standard development process.

This encourages re-use of tools, methods, and development artifacts. It also

allows the initial ramp-up costs to be amortized over a larger number of

projects. Formal methods are, therefore, most cost effective when they are

treated as a long-term investment.

6.1.2 Expensive to start

Formal methods involves a somewhat different skill set than is used in tra-

ditional or ad hoc development methods. Specification is a different skill

than coding and formal specification is different than natural language spec-

ification. The higher degree of precision and mathematical notation require

training and experience to become accustomed to.

This can lead to a relatively large up-front investment. This may come

in the form of capital outlay for training and tools, or simply in the cost

6.1. LESSONS 67

of reduced productivity as the development staff comes up to speed. It is

therefore advisable for organizations wishing to pursue formal methods to

view it as a long-term investment. Again, this will defray the costs over sev-

eral projects. This means, among other things, fostering in-house expertise

in the organization’s methods of choice. This will reduce reliance on outside

contractors or researchers while providing a knowledge base through which

new team members can more easily come up to speed.

In the wider community of academics and formal methods practitioners,

this cost can be eased by continued improvements in tools and educational

materials. Improvements in the quality and quantity of free tools, as well as

less academic, more example-style documentation, would will serve to lower

the barrier to entry for individual developers as well as smaller organizations.

6.1.3 Need resident experts

As Bowen and Hinchey pointed out in [BH95b], most projects that have used

formal methods successfully have had local expertise in their use. In some

cases, this meant working with researchers, such as the CICS redevelopment,

or building on in-house expertise from previous projects, as with Praxis.

Bootstrapping formal methods experience from nothing appears to be

relatively difficult. Again, this is probably due to the differences between de-

veloping with formal methods and developing without them. While new pro-

gramming languages and development frameworks typically build on other

skills a developer might have, this is less true of formal methods. Formal

6.1. LESSONS 68

methods typically use unfamiliar notations and skills such as set-theoretic

logic which, while common in academic computer science programs, are not

as widely used in traditional software engineering.

Opportunities for mitigating the costs of formal methods start-up presents

a challenge to the formal methods community. High quality tutorial and self-

educational materials could help development organizations to build formal

methods knowledge on their own. This is important because organized train-

ing is expensive, and also because it may be difficult or impossible to acquire

in some markets. Self-training material would also allow independent devel-

opers to more easily become acquainted with formal methods on their own,

as part of self-led professional development.

6.1.4 Tools helpful but not necessary

In contrast to what one might expect, success with formal methods is not

necessarily tied to the use of advanced tools. As reported in [CGR93], many

of the case studies used few if any tools, but still managed to achieve some

degree of success.

That said, there can be little doubt that some tool support is important

in the use of formal methods. For example, tools for preparing editable,

electronic artifacts are very important. However, while they can undoubtedly

be useful, tools for proof and other mathematical activities are not a necessity.

This is clearly the case for efforts that are not focused on proof, such as

light-weight formal specification for the purpose of elucidation rather than

6.1. LESSONS 69

demonstrable correctness.

One argument for the necessity of tool support is that it will relieve the

mathematical burden that formal methods places on non-experts. Since not

everyone is a mathematician or an expert in the formal method in question,

should not the purpose of tools be to fill in these deficiencies?

Of course, a tool cannot truly take the place of understanding a method,

so a certain amount of training will always be required. However, depending

on the method in question and how it is applied, the mathematics is not

necessarily beyond the reach of the programmers building a system – in

fact, if no formal proof is attempted, then there is practically no math at

all. It could also be argued that the real benefit of proof tools is not to

the non-expert, but to the experts and practitioners themselves. This is

exemplified by Praxis’ SPARK programming environment, which provides

tools to automatically discharge proof conditions of a program. These allow

a machine to do the “grunt work” of cranking out the “easy” proofs, freeing

up the engineers to work on the “hard” problems.

6.1.5 Right method for the right job

Just as with programming languages, there is no “one size fits all” formal

method. There are a number of different methods, and variations on these

methods, that specialize on different areas. For example, there is Z for general

modeling, Object Z for object-oriented systems, TCOZ for real-time systems,

and so forth, each with it’s own particular focus and approach.

6.1. LESSONS 70

To a certain extent, this is understandable and inevitable. The same

proliferation occurs in programming languages, with many different types of

languages, variations on languages, and hybridizations of different types of

languages evolving to fit the varied needs of projects and preferences of teams.

Indeed, as [Jac98] points out, this can actually be considered a strength.

A method that is universal in applicability cannot, by definition, take full

advantage of the details of a particular problem domain.

However, this also presents a problem to wide-spread adoption of formal-

ism. If no single notation or method is suitable to all problems, how are

organizations to choose methods in which to invest? As previously noted,

formal methods can have a relatively high start-up cost, so it may not be

feasible to invest in several methods to start. It is also more difficult to build

in-house expertise in several methods.

As with programming environments, in such cases it is probably safest

to choose the more established option. Thus a strategy of starting with

general purpose modeling languages such as Z and using experience built

with those to branch out into specialized methods is probably best. The

more established notations will be likely to have more support in the form

of tools, books and tutorials, and community participation.

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 71

6.2 Formal Methods in Information Systems

Different problem domains require different types of analysis. This section

will discuss some of the particular questions and issues that arise when ap-

plying formal methods to information systems.

6.2.1 Role of formalism: specification vs. design

The first question to arise in applying formal methods to information systems

is how it should be done. For non-critical systems, full code-level verification

is not likely to be required. This leaves selected verification of subsystems,

formal design, and formal specification as the primary modes of application.

Of these, formal design and formal specification are the most universally

applicable.

The precise role of formal methods in a project will depend, in part, on

the existing development process used by the organization in question. For

traditional waterfall-style, it is easy to see how formal modeling could be

applied at the specification level and then refined downward to the design

level. For a team using an agile development model with minimal up-front

specification, this might not be appropriate.

The “specification” approach involves translating the system require-

ments into a model in a formal notation. The model will most likely define

the high-level entities used in the system, their properties, and interactions.

The model will not attempt to describe any technical aspects of implemen-

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 72

tation. Rather, the goal is to capture the key features the system should

have. This allows for more explicit documentation of the system require-

ments as well as systematic analysis of the consistency and completeness of

the requirements.

In the “design” approach, formal methods are used to describe the planned

or actual implementation of the system. The constructed models would in-

clude information on the objects to be included in the system, their properties

and operations, and some details of how they work. Unlike specification, the

intent here is that there be at least a loose descriptive relationship between

the implementation and the formal model.

It is possible to use either or both of these approaches in a project, de-

pending on the nature of the process in use. A development effort can start

with a formal specification of a system and refine this down into a design.

Alternatively, the formalization effort could cease after the specification and

use an informal design process. It is also conceivable to simply skip the for-

mal specification and do the system design in a formal notation, though this

is generally not the approach recommended by practitioners.

6.2.2 Business rules

One of the major pitfalls of developing information systems is the prolifera-

tion of business rules. The actions and analysis performed by a system often

have to contend with a large number of requirements and restrictions imposed

by business needs, organizational guidelines, or laws governing the business.

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 73

Such complexities offer an excellent opportunity to apply formal analysis,

as formal modeling languages are typically well suited to documenting con-

straints and relationships between parts of a system. Also, tools to support

model checking can be used to establish the correctness and consistency of

the business rules prior to implementation.

The main challenge to applying formalism to business rules involves re-

quirements drift. Whether it is due to changing business needs, new leg-

islation, or some other reason, it is common for these rules to change over

time. Changes to requirements necessitates changes to the formal models,

which contrasts with the common prejudice associated with the “waterfall”

method of development, that specification and design are up-front activities

which, when finished, are over. With formal designs and specifications, this

is certainly not the right approach.

The proper use of formal modeling methods, according to most experts,

requires that specification documents become more “live” than they are tra-

ditionally considered to be. That is, rather than being completed prior to

the start of development and serving as a guideline, a formal specifications

must be a central part of the development process, undergoing revisions and

“patching” just as the code does. After all, a formal specification that is not

updated with the code is of no more use than a similarly out of date English

specification.

This is an area where tool support could be particularly useful. Amey [Ame02]

describes the use of the SPARK examiner with a semi-formal CORE require-

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 74

ments document. The tool helped to keep the document “live” by haranguing

programmers into clarifying vague requirements. Of course, this particular

method suffers from the drawback that it relies on tools designed for full

code-level correctness checking, which is not always necessary. However, one

could most likely devise a convention-based method for automatically tying

portions of code to portions of specification, allowing for more automated

checking of consistency with code. For instance, if file naming conventions

were used to tie code to particular formal models, it would be possible to add

hooks into a version control system to check that the specification is updated

when the code is updated.

6.2.3 User interface specification

Most case studies do not bother to formalize the software user interface (UI).

Indeed, it can be argued that, with proper design and architecture, there is

little need to do so. If business logic is properly separated from the user

interface layer, then little of real importance happens in the UI layer. One

might wish to verify that the actions initiated by various interactions with

the UI are correct, but this does not require the rigor of formal methods.

Furthermore, the main quality concerns in user interfaces have to do with

design and user experience, not correctness. For example, a good UI must

be clear and concise, and should consider the expectations of the user and

operate in a way that is consistent with them. Such things are not readily

addressed by formal specification methods, as they are relative to the target

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 75

user and tend to be subjective.

However, user interface details can play an important role in the require-

ments and specification phase of a project. For non-technical project man-

agers and stake holders, the user interface is the the most visible part of the

system and the portion to which they can most easily relate. It is, therefore,

not uncommon for them to specify system requirements in terms of screens

or controls in the UI. This suggests that some projects could benefit from

light-weight UI formalization.

One example of such would be the explicit mapping to the system of

UI-based requirements. This could be especially useful when the project

requirements are low quality or are incomplete. For instance, an informal

requirements document might contain screen mock-ups and natural language

requirements which are not consistent with each other, or the specifications

for a second version of a product might contain requirements that assume

some functionality of the system which differs from reality.

Some level of formalization could also be helpful in capturing the applica-

tion control flow. This is especially important in web applications, where the

application flow is not always obvious due to the stateless model of HTTP.

At the most basic level, this can be captured with relatively little effort using,

for example, simple indicators in the postcondition.

A certain degree of formalization could also be useful in the specifica-

tion of complex input forms. Formal modeling languages lend themselves

to specifying input constraints, and can easily capture such common input

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 76

control constraints as size limit, data type, selection from a specific set of

choices, default values, etc. However, the usefulness of such formalization,

especially if done on a large scale, may not out-weight the effort. In many

situations, it is likely that, rather than adding new information, modeling

UI constraints would simply be repeating other, previously specified system

constraints. Such a technique would be most useful in cases where the system

requires large, complicated data input forms which do not map directly to

system objects.

6.2.4 Databases

Relational databases present one of the most obvious opportunities for for-

malization. They are extremely common in business applications and typi-

cally hold much of an organization’s most important information. Further-

more, the integrity of the data they contain is of critical importance and

can be enforced by a complex set of constraints which lend themselves to

mathematical modeling.

As has been shown by Barros [dB94b] and Simpson [SM03], relational

databases are well suited to being modeled via formal methods. For example,

the Z language uses notation that maps quite directly to the concepts of

relational theory. The Z schema is roughly equivalent to a relational table,

with the variables in the declaration portion being analogous to columns and

the predicate portion of the schema mapping to relational constraints.

Although the mapping is not quite as direct, the same principles can

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 77

be applied to other notations that use set theory and support record types

and constraints, such as VDM-SL. The set theoretic concepts used in such

languages still correspond reasonably well with that used by standard SQL,

so the same information can be expressed. A more detailed example using

VDM++ is presented in the next chapter.

Relational schema to Z schema

Continuing with the Z example, the names and types of Relational Database

(RDB) columns can map almost directly to the variables of Z schema. The

main difference is in the predispositions of how each system handles data

types. Most relational databases deal with concrete primitive types, such

as integers, strings, and dates. Z, on the other hand, is more focused on

handling abstract data types.

This does not represent a problem, so much as a difference in focus.

While Z may have a bias towards abstract types, it need not be restricted to

them. One could simply define Z types that correspond to the constraints on

primitive types supported by a particular Relational Database Management

System (RDBMS). One might also choose to define more abstract types to

correspond to the complex types available in some RDBMS systems, such as

coordinate types for Geographic Information Systems (GIS), Binary Large

Object (BLOB) types, and so forth. It is simply a matter of choosing the

appropriate level of detail in the specification as part of the refinement pro-

cess.

6.2. FORMAL METHODS IN INFORMATION SYSTEMS 78

Relational constraints to Z predicates

Translating a relational database schema without constraints into Z is nearly

trivial. Adding constraints is not much harder, as the constraint notation for

Z can be used to capture the same information. In fact, being more general,

formal modeling languages are able to capture more information, including

constraints that are difficult to express in SQL or which, for whatever reason,

need to be enforced at the application level.

The main difficulty in moving to a formal modeling language is the more

complex notation. For many common types of constraints, the formal logic is

much more verbose than the standard SQL notation. For example, compare

a simple PRIMARY KEY declaration in SQL to the equivalent Z constraint:

∃ k : Country � CountryDetails • (∀ c : Country • (k c).name = c)

Unsurprisingly, the situation only becomes worse with cascading foreign key

constraints or complex CHECK constraints. Mapping formal models to the

database at this level of detail could easily become cumbersome for complex

data models. Whether it is a useful exercise will most likely depend on the

system in question.

There is an “impedance mismatch” when mixing relational and impera-

tive programming in business systems. That is, the concepts and techniques

used to model the object-oriented application code and the relation database

schema for a system are different and mixing the two can present difficulties.

6.3. GOALS 79

Use of a formal notation such as Z or VDM-SL with relational databases

allows a measure of consistency at the specification level, as the same lan-

guage can be used when describing relational and other parts of the system.

During the refinement process, it may also ease the mapping of one type of

model to the other.

6.3 Goals

This section discusses some of the proposed goals toward which formal meth-

ods advocates should work. These items should make formal methods some-

what more palatable to mainstream software developers and thus increase

their adoption. This, in turn, would lead to a more formal and scientific

practice of software development.

6.3.1 Black-box formal methods

Probably the most effective way to increase uptake of formal methods would

be to remove the complexity involved in applying them. Ideally, this would

mean allowing software practitioners to use formal methods without having to

know anything about formal methods. At they very least, it means allowing

them to use formal methods productively without having engage an on-site

expert to consult.

Tool support can go a long way towards this goal. Of course, the extent

to which it is feasible depends in large part on the nature of the formal

6.3. GOALS 80

methods in question. It may be feasible to completely hide the formal basis

of some specialized tools from users. However, for general purpose formal

modeling languages, it seems unlikely that the need for an understanding

of the mathematics can be completely eliminated. However, even relatively

simple tools such as parsers and type checkers are useful in taking some of

the analytical burden off of developers. Such checks are especially helpful

because they require no effort on the part of the user.

Integration with existing development tools provides an opportunity in

this area. It reduces the barriers to adoption and allows for greater integra-

tion into the development process. The Overture project shows great promise

in this regard. It is already well integrated into Eclipse and allows users to

read and write VDM specifications just as they would code files for a typical

programming language. Another very useful integration is with UML-based

tools, as UML converters allow a relatively transparent conversion from the

common graphical modeling language to a formal modeling language. This

also presents opportunities for automatic interconversion and updates be-

tween models.

From a non-tool perspective, methods, patterns, and guidelines for formal

specification development are areas in need of improvement. Modern software

development takes place in a wide variety of environments and the design

techniques and patterns which are well suited to one do not always map

directly to others. This applies not only to the move from non-formal to

formal methods, but from one problem domain to another. Developers new

6.3. GOALS 81

to formal methods in general or to their application to a particular problem

space would benefit from examples that are directly applicable to their needs.

6.3.2 Design patterns for FM

In software development, “design patterns” are specific design idioms that

recur in a variety of projects. They are established methods of accomplishing

some particular design goal and are generally independent of a particular

implementation language or problem domain. They are normally described

in a standard form and using a standard notation (UML).

Formal methods could benefit from some similar concept. While formal

specifications are necessarily system- and domain-specific, it is still possible

to write template specifications for specific common parts of systems to serve

as a guide to developers.

There are several ways for practitioners to address this. The simplest

and most direct method is simply to apply formal methods to the descrip-

tion of existing design patterns. This can, to some extent, be accomplished

mechanically using tools to map UML to a formal modeling language such

as VDM-SL or Z. However, this only addresses the application of formal

modeling at a low level and does not demonstrate approaches to modeling.

Another potential application is the formal design of reusable system com-

ponents, such as authentication and authorization modules, rule-based data

validation frameworks, and so forth. This approach aims to build reusable

design specifications which can be implemented in any number of program-

6.3. GOALS 82

ming languages and technologies. Such a project might look almost like a

design for an application development framework

A third possibility involves the development of patterns for application

of formal methods. This scenario addresses the use of formal methods as a

mid-level design tool. It would involve the publication of template models

or examples of the application of formal methods. In this way, it would be

similar to the way patterns are presented in the literature on object-oriented

design, as small, targeted approaches to solving particular common problems.

Likewise, the formal methods community could supply small, easily used

examples of how to gainfully apply formalism in common situations.

6.3.3 Standard notation or general method

In order for formal methods to enjoy widespread use, it would be helpful

to adopt a certain degree of notational consistency. This has two benefits.

First, it enables the promulgation of the techniques described in the previous

section. Using a standard notation would allow researchers and practitioners

to focus their efforts and reach a larger audience. Second, it would provide

a clearer and more unified front to mainstream developers. Presenting a

smaller set of viable methods provides a clearer path to the use of formal

methods and a smaller and more well defined area of learning.

One of the lessons learned from industrial case studies is to use the right

method for the right job. In other words, there is no single “correct” method

or notation - each method has it’s own distinct area of specialization and

6.3. GOALS 83

applicability. While this is an important lesson, it is still compatible with a

common notation. While there are many situations where specialized meth-

ods are most appropriate, there are still fairly general purpose methods that

can be widely applied. These can serve as a common base or starting point,

much the same as general purpose programming languages such as Java and

C++ are suitable, if not optimal, for most common tasks.

The question of which methods are most appropriate for general use is

open to debate, and must, of course, ultimately be decided by community

consensus. However, the most obvious choices are the VDM and Z families

of modeling language. Both of these notations are over 20 years old, have

ISO standards, and have relatively large user communities and bodies of

published books and articles on their use and application. Furthermore,

both notations are relatively general purpose and can be readily applied to

“every day” business systems and other common problem domains. Both

also have a number of variations and offshoots that can be applied in more

specialized cases. Thus they are already positioned for wide-spread use in a

way that more niche or specialized notations are not.

7 Modeling a Web

Application Using VDM++

and PHP

This chapter presents an example of formal development methods applied

to a portion of a “typical” web-based application. This includes modeling

the high-level design of the application as well as the low-level design and

translation into executable PHP code.

The purpose of this effort is to demonstrate the application of formal

methods to the type of non-critical system which is often developed by small

organizations. The goals of this project are threefold:

1. To provide an example of how small development teams can apply a

formal modeling language to the development of a web-based system.

2. To demonstrate the application of formalism to a modern dynamic

language.

84

7.1. CHOICE OF TECHNOLOGY AND NOTATION 85

3. To develop a reusable framework of formal modeling techniques for use

in future web applications.

7.1 Choice of technology and notation

The target platform for this web application is the LAMP stack. LAMP is

an acronym for Linux, Apache, MySQL, and PHP (though other “P” lan-

guages, such as Python or Perl, are sometimes substituted), which are the

target operating system, web server, database, and programming language,

respectively. The LAMP technology stack is one of the most popular web de-

velopment platforms in current use. All the major components are available

at no cost under open-source or free software licenses and can be easily used

with a variety of free development and administration tools. This makes the

technology stack relatively inexpensive to deploy and so has made it very

popular among smaller groups operating on a limited budget – hobbyists,

not-for-profit groups (e.g. free software projects), and start-up companies.

Such groups are prime candidates for evangelism of formal methods. They

typically do not have large budgets for tools or training and do not have

ready access to academics and experienced practitioners. They may also be

less likely to have formal education requirements, as they focus more on work

experience and the demonstrated ability to do the job at hand. They are thus

less likely to have prior exposure to formal methods.

This thesis will not present any explicit treatment of the operating sys-

7.1. CHOICE OF TECHNOLOGY AND NOTATION 86

tem and web server, as the application will be largely independent of them –

they will merely serve as an execution platform. It will also not deal in any

depth with the particular database management system, as the application

will target a generic superset of ANSI SQL-92 rather than a particular ven-

dor’s SQL implementation. Instead, the focus will be on the implementation

language – PHP.

7.1.1 Formal notation

The formal notation used for this project is VDM++. It is an object-oriented

formal modeling language based on the VDM, which began development in

the 1990’s. VDM was originally developed in the 1970’s by IBM’s Vienna

lab and accepted as an ISO standard in 1996. [FLM+05] It is therefore one

of the older, more established formal methods in current use. It is also a

relatively general-purpose method, suitable for the type of procedural/object-

oriented web applications that are typically developed in PHP. The choice of

VDM++ over straight VDM-SL is a consequence of the heavy use of object-

oriented programming in current software development, which is more easily

accommodated in a notation with built-in support.

Other factors which informed this decision were the syntax of VDM++

and the methods for data refinement. Standard VDM-SL, and by extension

VDM++, provides an ASCII text-based syntax, reminiscent of a program-

ming language, which is easily typed into any text editor. The main compet-

ing method considered for use, Object-Z, uses the same box schema notation

7.1. CHOICE OF TECHNOLOGY AND NOTATION 87

as the Z language upon which it is based. Such notation requires special

tools, and so Object-Z is usually written either with a special editor or using

LaTeX markup. The VDM++ syntax is therefore somewhat easier to deal

with and should be more familiar to programmers, thus easing adoption.

Furthermore, VDM has guidelines for the refinement or reification (to

use Jones’s term [Jon90]) of data. This is the method by which the “pure”

data representation used in a specification are translated into less abstract

equivalents that can be more easily implemented in a conventional program-

ming language, most of which do not have native support for abstract types

such as sets. VDM includes a standard method of reification that allows the

specifier to demonstrate that one representation is an acceptable refinement

of another. While such arguments can be constructed in the Z notation,

there is not a standard method for doing so. While this thesis will not make

extensive use of VDM’s refinement method, such a method clearly has the

potential to be useful to specifiers, especially when dealing with the complex

and sometimes ill-defined data types that arise in languages such as PHP.

7.1.2 Tooling

While pencil and paper design skills are still very important, modern software

developers rely heavily on software tools. For this project, two sets of tools

were used. The formal design and specification were written primarily using

the Overture tool set. The VDM++ Toolbox was also used for the initial

modeling and for some particular tasks, such as pretty printing.

7.1. CHOICE OF TECHNOLOGY AND NOTATION 88

The VDM++ Toolbox was used initially because it is a considerably older

and more established tool that Overture. It has a full feature set, providing

parsing, type checking, integrity checking, pretty printing, code generation,

an interpreter, and communication with the Rational Rose UML modeler.

The vendor also provides extensive documentation. However, the toolbox

does not provide an editing environment – users are required to configure

an external editor. For this project, that external tool was the GVim editor

with a VDM++ syntax highlighting plug-in installed. Another drawback of

the VDM++ toolbox is that it is free only for non-commercial use. While

this may not affect it’s desirability for use on open-source project, it could

certainly give pause to small commercial development teams.

By way of contrast, the Overture Project was formed with the explicit goal

of building free and open-source tools. Furthermore, the tool’s design is quite

modern – it is built as a series of plug-ins to Eclipse, a popular and widely

used open-source integrated development environment (IDE). This provides

the user with a rich, interactive editing experience. It also enables immediate

feedback, as parsing and type checking are performed in the background while

the user works and presented on the screen with visual cues. This also allows

for convenient integration with conventional development tools, as there are

PHP development profiles available for use with Eclipse as well.

7.1. CHOICE OF TECHNOLOGY AND NOTATION 89

7.1.3 Overview of the PHP language

PHP is a popular scripting language used primarily for the development of

web applications. “PHP” originally stood for “Personal Home Page” and is

now a recursive abbreviation for “PHP Hypertext Preprocessor”. As these

names suggest, over five major versions PHP has undergone a great deal of

evolution. It started out as a simple template system and HTML preproces-

sor, later developed into a full-fledged procedural programming language, and

now supports most common object-oriented programming features. Today,

PHP code is used in a wide range of large and sophisticated applications,

including some of the largest sites on the Internet, such as Facebook and

Digg.

As a language, PHP is somewhat disorganized. There is no formal spec-

ification – the language is simply defined by the “official” implementation.

It is a mixed paradigm language, somewhat similar to C++ in that it has

support for object-oriented programming, but also supports completely pro-

cedural development. PHP can even function as its own template engine,

mingling data with sequential code. Source files are dual mode, with PHP

code being contained in special angle-bracket delimited blocks, such as this

<?php echo ’Hello world!’; ?>, and all characters outside such blocks

being treated as data to write directly to the program’s output stream.

The data type system in PHP is loose, implicit, and dynamic. Variables

are created at run-time and need not be declared in advance – this includes

the public instance variables of classes. The type of a variable is determined

7.1. CHOICE OF TECHNOLOGY AND NOTATION 90

by the value assigned to it, with types not being fixed, i.e. a string can

be assigned to a variable containing an integer. While there is support for

explicit type casting, most simple types can be cast to each other implicitly.

This includes implicit casting of strings to integer and floating point types,

strings to numeric types, and casting of any type to boolean.

In addition to dynamic data typing, PHP has many other highly dynamic

features. One of the more unusual is so-called “variable variables”. This is a

feature whereby PHP allows variables to be referenced based on the contents

of other variables. This allows for code such as the following:

$a = ” t e s t ” ;

$b = ”a ” ;

p r i n t $$b ; # p r i n t s ‘ ‘ t e s t ’ ’

Here the use of the double dollar sign indicates that the named variable

contains the name of the target variable, somewhat analogous to the use of

pointers to pointers in C, except that variable variables operate based on

symbol-table look-ups for variable names. The same technique can be used

to call functions, using a variable that simply contains the function name.

This concept extends to object-oriented programming as well. Object

fields and methods can both be referenced through variables containing their

corresponding name. In addition, objects can be created based on variables

containing a class name, so that rather than explicitly naming the class to

instantiate, objects can be created based simply on the contents of string

variables. For example, assuming that a “User” class is defined, an instance of

7.1. CHOICE OF TECHNOLOGY AND NOTATION 91

it can be created by applying the new keyword to a string variable containing

the value “User”. The following illustrates these capabilities.

//The t r a d i t i o n a l v e r s i on

$ u s e r o b j = new User () ;

$use r ob j−>last name = ”Smith ” ;

$use r ob j−>save () ;

// The equ iva l en t us ing v a r i a b l e v a r i a b l e s f o r f i e l d s ,

// methods , and c l a s s i n s t a n t i a t i o n .

$c lass name = ”User ” ;

$ f i e ld name = ” last name ” ;

$method name = ” save ” ;

$ u s e r o b j = new $class name () ;

$use r ob j−>$ f i e ld name = ”Smith ” ;

$use r ob j−>$method name () ;

One other interesting aspect of object-oriented PHP is the “magic meth-

ods”. These are methods which, if defined by a class, will be called automat-

ically by the runtime in certain circumstances. Three of the more common

and noteworthy magic methods are get (), set (), and call (). As the

names imply, set () and get () are called when there is an attempt to as-

sign or retrieve an undefined field on an object. These are sometimes used to

implement encapsulated properties on classes, mimicking the field-like syntax

7.1. CHOICE OF TECHNOLOGY AND NOTATION 92

of C# rather using the getter and setter methods common in Java. Similarly,

the call () magic method is invoked when an undefined method is called

on an object. This is sometimes used for dynamic, convention-based APIs,

such as querying a database table by multiple fields without explicitly writ-

ing separate methods for each, e.g. to call a common query method using

the names getById(), getByName(), etc. rather than supply parameters.

Challenges to formalism

Features such as those described above can enable developers to write pow-

erful programs using very little code. However, if used carelessly, they can

also be sources of confusion and subtle errors. Not only do these features

make it difficult to assess the meaning of code prior to run-time, they can be

used to add implicit behaviors to the system or to override typical behavior.

Another complicating factor is the nature of PHP’s development. PHP

is as much a product as a language. It does not have a formal specification

of the type that would be submitted to a standards body, such as exists for

languages like C++ and Ada. Rather, the language is defined informally

through natural language documentation (the language reference manual)

and operationally by reference to the behavior of the “official” PHP inter-

preter. The language is, therefore, subject to change with new releases of the

interpreter. Furthermore, PHP has a significant amount of run-time config-

uration. In some cases, the behavior of certain key aspects of the language

can change significantly based on the current configuration. The chief ex-

7.2. DEVELOPMENT APPROACH 93

amples of this are features such as “safe mode” and “magic quotes”, which

alter the way in which certain functions and standard variables work. Thus

the correctness of a PHP program can vary greatly with the environment in

which it is executed.

These factors can make it difficult to directly model some behaviors of

PHP applications using standard modeling notations. This leaves developers

in the position of either choosing not to use such features or constructing

their formal models in a more static manner – expressing what is meant to

be accomplished by a module rather than what it actually does.

7.2 Development Approach

The development of this application uses a light-weight approach to formal

modeling. It will follow a fairly typical development process model, repre-

sentative of real-world processes used by small development teams.

The starting point for the system design will be a (fictitious) list of in-

formal system requirements. This will be followed by an elaboration and

clarification of the requirements, from which the system design will be de-

rived. The system design will be refined and elaborated, and then converted

into the final code.

Formal models will be constructed at both low and high levels of detail.

Analysis will be performed on the models solely for purposes of elucidating

the system design. No attempt at formal proof of correctness or consistency

7.3. SYSTEM REQUIREMENTS 94

will be attempted.

This project will attempt to keep the formal models “live” documents.

As modifications are made to the system design during later phases, the

models will be updated to reflect this. This will be particularly the case for

the most detailed model model, which most closely describes the system as

implemented.

7.3 System requirements

The sample application to be implemented is a simple document management

system. It needs to support multiple users, allow users to create, retrieve,

update, and delete documents, and manage security constraints on such op-

erations. As this is a sample application, it will focus on the underlying

aspects of the system, i.e. the underlying framework and authentication and

authorization subsystems, rather than additional high-level functionality.

The following are the requirements for the system. The initial require-

ments statement is highly informal and broken down into a simple list of

needed features. Such lists are not uncommon artifacts of the initial require-

ments gathering for a system and nearly always need some level of clarifica-

tion.

I1 The system must support multiple users.

I2 The system must allow users to read, write, edit, and delete documents.

7.3. SYSTEM REQUIREMENTS 95

I3 It should be possible for documents to be made secure, so that only

selected users can view them.

I4 Only the person who created a document should be able to edit or

delete it.

I5 The owner of a document may grant other users permission to edit,

delete, or read it.

I6 System administrators should be able to change the permissions and

ownership of a document.

This list may be made more explicit by separating the above requirements

into their respective components. This is done to more clearly illustrate the

translation from the informal requirements to the formal model.

R1 The system must have user accounts. (Implied by I1 above)

R2 The system must store documents. (Implied by I2 above)

R3 The system must support multiple concurrent users. (From I1 above)

R4 The system must allow for documents to be created, read, edited, or

deleted. (From I2 above)

R5 The system must restrict read/edit/delete operations on documents to

only specified users. (Generalization of I3 – I6 above).

R6 Documents must have an “owner”. (Implied by I4 – I6 above)

7.3. SYSTEM REQUIREMENTS 96

R7 Any user may create new documents. (Implied by I3 – I6 above)

R8 When a document is created, its owner is set to the user who created

it. (Implied by I4 above)

R9 The system must maintain a list of “permissions”, i.e. users who are

allowed to read/edit/delete each document. (Implied by I5 and I6

above)

R10 The system should maintain a list of users who are administrators.

(Implied by I6 above)

R11 The system should allow the owner of each document to modify per-

missions on that document. (From I5 above)

R12 The system should allow users who are administrators to modify own-

ership and permissions on any document. (From I6 above)

7.3.1 Requirements specification

Having collected a satisfactory, if somewhat basic, list of requirements, the

first step in system development is to translate the requirements into a high-

level formal specification. This begins by simply identifying the entities in-

volved in the system, the constraints upon them, and their relations to each

other.

7.3. SYSTEM REQUIREMENTS 97

Required entities

Initially, it is clear from requirements R1 and R2 that the system must have

at least two types of objects: documents and users, which will be represented

by the VDM++ Document and User classes, respectively. The exact shape

of these objects is not made explicit in the requirements. However, it is safe

to assume that users will have at least the username and password members

that are typical in multi-user environments. Likewise, it can be assumed

that documents will have at least some kind of content, which, for the sake

of simplicity, will be a simple character string. From requirement R7, it

can also be concluded that a document will be associated with a user object

representing its owner.

From requirement R4, there are at least four operations on document

objects - creation, editing, deletion, and reading. For user objects, require-

ment R3 and the security requirements imply that there must be login and

logout operations, as access control makes little sense without some form of

authentication.

The next step is to consider the security constraint requirements. Because

these requirements do not pertain entirely to either documents or users, they

can be modeled these using a separate Security class. The members of this

class will include the administrator list and permissions list from require-

ments R9 and R10. The administrator list can be modeled as a simple set of

User objects. For permissions, more precision is required.

7.3. SYSTEM REQUIREMENTS 98

Access control objects

At this point, the rules regarding how permissions function must be clarified.

From requirement R9, there are four components to the elements of the

permission list: users, documents, the type of access (read/edit/delete), and

the authorization status (granted/denied). Logically, these can be broken

into two parts of a mapping. That is, the user and document will determine

an authorization mapping from access type to authorization status.

In VDM++, this can be modeled by a somewhat complex mapping. First,

define the union type AccessType = <read> | <edit> | <delete>, which

defines the domain of the authorization mapping. The authorization state

can be modeled by a simple boolean. The set of possible permissions can

then be defined by the mapping: Permission = map (User * Document)

to (map AccessType to bool) The list of permissions stored by the system

can then be expressed simply as a variable of this type.

While this definition of Permission appears to capture the intent of re-

quirement R9, it immediately raises implementation issues. If permissions

are to be stored as a mapping of the Cartesian product of users and docu-

ments to an authorization mapping, the most obvious implementation is that

the system must store a record for all possible combinations of users and doc-

uments. The advantage of this approach is that checking of permissions can

be trivially modeled as a map application. Thus a lookup of read permis-

sions for a document d1 and user u1 can be written as permissions(mk (u1,

d1))(<read>).

7.3. SYSTEM REQUIREMENTS 99

However, there are a number of problems with this approach. First, it

raises the issue of storage size. The storage size equation would be card

Permission = card User * card Document, which seems excessive. How-

ever, it also raises issues of performance and management. Whenever a new

user or document is added to the system, a number of permission records

equal to the cardinality of the other set must be added to the permission

store. In addition, it is inconvenient for users and administrators who want

to specify document access to individually consider each and every user in the

system. For instance, in a 500-person organization, this design does not allow

a quick and easy way to specify that read access to a document is denied to

everyone except a particular 20-person department. Such scenarios are not

uncommon in business, and so it is important to take this into account.

Another possible design is to work from a “default” set of permissions

and only store explicit changes. So, for example, we might specify that

read, edit, and delete permissions are granted for the document owner and

administrators and that for all other users, read permission is granted and

edit and delete permission denied. This implementation can use the same

Permission type for the permission list as the previous version. However,

permission checking cannot be done with a simple map application. Rather,

an operation must be added to account for the default permissions. This

could be implicitly specified in VDM++ as:

PermissionCheck (u : User , d : Document , t : AccessType) r :

bool

7.3. SYSTEM REQUIREMENTS 100

ext rd permiss ions , admin i s t r a to r s

post

i f mk (u , d) in s e t dom permi s s i ons then

r = (pe rmi s s i ons (mk (u , d)) (t))

else

r = (u = d . owner or u in s e t admin i s t r a to r s or

t = <read>) ;

This design would radically reduce the storage requirements over the pre-

vious version. In the worst-case scenario, the storage requirements would be

the same, while in the best-case, where no permissions were ever changed

from the default, no storage at all would be required. Furthermore, adding

new documents and users would not require any additions to the permission

store at all, improving performance.

The management issue, however, remains. Continuing the previous ex-

ample of granting read access on a document only to a certain department

within an organization, it would still be necessary to store a record for each

user outside that department. Changing the default permission set would

not solve this problem, but simply shift it to be more or less favorable to

different usage scenarios.

Adding groups

This leads us to reconsider the original requirements. It is clear that it

would be desirable for users to be able to specify access permissions based

7.3. SYSTEM REQUIREMENTS 101

on membership in one or more groups. We will therefore add requirements

to account for this:

R13 The system should allow administrators to create groups of users.

R14 When setting permissions, users should be able to grant or deny access

too all members of a group.

Groups are easily modeled as a set of users, Group = set of User in

VDM++. However, for ease of management, groups will have to contain

some metadata, minimally a group name, and are therefore better modeled

as a class containing a set of users.

With the addition of groups, it is now necessary to modify the way per-

missions are modeled. Since requirement R9 is still in effect, it is necessary

to support permissions for both users and groups. The most straight-forward

way to handle this is to model permissions as a single mapping, from access

objects, i.e. users and groups, to authorization mappings. This could be

modeled with a union type:

AccessObject = User | Group ;

Permiss ion = map (AccessObject ∗ Document) to (map

AccessType to bool) ;

To check permissions with this model will require defining an operation

as above. One way to do this is to attempt to adapt the above user-only

PermissionCheck operation.

7.3. SYSTEM REQUIREMENTS 102

PermissionCheck (u : User , d : Document , t : AccessType) r :

bool

ext rd permiss ions , groups

post

r =

i f mk (u , d) in s e t dom permi s s i ons then

permi s s i ons (mk (u , d)) (t)

else

exists g in s e t groups &

mk (g , d) in s e t dom permi s s i ons and

u in s e t g . members and

permi s s i ons (mk (g , d)) (t)

Note that the postcondition for this operation has some interesting im-

plications for the application security policy. First, like the last version, it

specifies the order of precedence for permissions. That is, individual user per-

missions take precedence over group permissions. Second, the “else” portion

of the outer conditional specifies a “default deny” security policy. Specif-

ically, the predicate specifies that the requested access to the document is

only granted if the user is a member of a group with the specified access. If

the user is not a member of a group with access, or if there are no permis-

sions specified for the any of the user’s groups, the predicate will be false and

access will be denied.

7.3. SYSTEM REQUIREMENTS 103

7.3.2 System model

To model the application of security checks, it is necessary to represent the

system state, in particular the currently logged in user. This is accomplished

by adding a System class with members for an instance of the security class

and sets of users and documents, as well as a member for the current user.

This class will also contain the operations that represent the various tasks

performed through the user interface.

Beginning with requirement R13, the functionality is filled out by adding

the CreateGroup, AddUsersToGroup, and DeleteUsersFromGroup opera-

tions. These use preconditions to enforce the requirement that these actions

can only be performed by administrators. The same precondition suffices

for the ChangeOwner operation to satisfy the ownership change portion of

requirement R12. For the SetPermission operation, adding a comparison

of the document owner and current user to this satisfies the security checks

for requirements R11 and R12.

To round out the functionality of the application, the system class also

requires operations for users to log in and out, as well as operations to

access documents – ListDocuments, CreateDocument, EditDocument, and

ReadDocument. These operations correspond roughly to the different pages

of the web application. Since access to some of these pages is controlled, it

is necessary to model the results of the page access. At the level of detail

used in this specification, it is sufficient to model binary success/failure or

granted/denied as simple boolean results. Thus the Login operation returns

7.4. COMPONENT-LEVEL SPECIFICATION 104

true on a successful login and false on failure, while the ReadDocument and

EditDocument operations return true if the user is able to read/edit the doc-

ument, and false otherwise. For the ListDocuments operation, the return

value is a set of documents reflecting the documents in the system to which

the user has access.

At this point, the high-level specification covers the bulk of the system

requirements. The next phase in the development process is refinement and

detailing of the model. For this project, this will consist of two levels of

refinement. The high-level model will first be translated into a component-

level model, which will then be converted into a detailed design.

7.4 Component-level specification

From a review of the system requirements specification and common design

patterns, it is relatively straight-forward to decompose the system into its

various components. This will serve as the starting point for a more detailed

system specification.

The high-level model begins by declaring a top-level System class to model

the overall system state. This serves as the entry point to the application

and the repository of any global state.

The next step is the separation of entities. The initial requirements speci-

fication deals only with the entities present in the system – documents, users,

etc. In designing a system, it is useful to separate these domain objects from

7.4. COMPONENT-LEVEL SPECIFICATION 105

display logic and other orthogonal concerns. To this end, the system entities

are modularized, creating controller classes and domain object classes for

each.

In this design, the controller classes encapsulate the user-facing web pages

which make up the application. Each class represents a logical portion of the

system with each class method representing an individual web page. This

provides a straight-forward convention for organizing the system and meshes

well with the Model-View-Controller implementations commonly found in

PHP-based application development frameworks.

The domain objects corresponding to each controller represent the system

data, storing document content, user information, etc. At this level of detail,

these classes simply define the key data contained in each object, with any

needed methods being left for later. The notable exception is the introduction

of the ActiveRecord class, from which the domain objects inherit. This

class specifies the design pattern used as the object-relational mapping and

persistence mechanism for the domain objects.

The final portion of the Model-View-Controller pattern mentioned above

is a simple View class. This class simply represents the HTML and other

client-side display code emitted by the application. It is largely a place-

holder at this level of detail.

The final component in the system is the persistence layer – the database.

At a high level, the database can be viewed as simply a set of tables – there

is little immediate need to model connections or complex constraints. For

7.5. SYSTEM DESIGN 106

the sake of speed and simplicity, rather than specify the database schema up

front, the component-level specification simply defines the database tables

as sets of domain objects. This serves to document the entities in need of

storage. It also implies a fairly simple data storage structure, wherein domain

objects map more or less directly to tables.

7.5 System Design

Having developed a list of requirements and formalized them at a fairly high

level, the next task is to proceed to the system design. Because this is a

relatively small and simple project, the design model is written at a moderate

to low level of abstraction. That is, it describes the architecture and design

of the system, but does not go to great lengths to be translatable directly

into executable code. The purpose of this design is to create a model of the

system behavior as a reference for implementation and to aid in analysis of

the system.

7.5.1 Architecture

The system will have a fairly standard three-tier design, building on a num-

ber of published design patterns [Fow02]. It will use the common web-based

variant of the Model-View-Controller pattern, wherein communication be-

tween the model and view can be considered “batched” in page updates. It

will also use a Front Controller for unified request handling and an Active

7.5. SYSTEM DESIGN 107

Record pattern for object persistence.

The use of these common patterns offers some advantages with respect

to formal modeling. As they are widely used in PHP-based applications and

application development frameworks, they also offer an opportunity for spec-

ification re-use – the formalism done for one project can be repurposed and

adapted to another. In addition, because these patterns are in common use,

they are well understood and so provide good examples for pedagogical pur-

poses, as they lower the learning curve for formal modeling. These patterns

will be discussed below.

Front Controller

The Front Controller is a single point of entry into an application. It receives

and handles requests, performs any initialization or common processing, and

then dispatches them to other classes for primary processing. In “traditional”

PHP, a page-based model is used, in which each page of the application is an

entry point, and so is responsible for calling any common code on it’s own.

The front controller consolidates this logic into one location.

In PHP, it is common to use a modified version of the front controller. The

PHP runtime does a great deal of the handling for GET and POST requests,

including parsing out the data fields and populating global variables with

the data, as well as providing access to cookies and server information such

as the request URI. Therefore, the handler portion of the front controller is

reduced to simply dispatching of requests to the appropriate classes. That is

7.5. SYSTEM DESIGN 108

the approach taken in this application.

Model-View-Controller

The Model-View-Controller or MVC pattern is a technique for separating

business logic and presentation. It is a three-tiered design, with the “model”

being the problem domain object, the “view” being the presentation layer,

and the “controller” being the mediator between the two.

In PHP and web applications in general, it is traditional to use a modified

version of the MVC pattern. MVC was originally used in graphical thick-

client applications and implied a design in which updates to either the model

or the view would immediately be propagated to the other. In web applica-

tions, updates are generally batched and applied on a per-request basis, i.e.

when a page is posted, updates on all fields are applied at that time.

Note that the pattern does not include a concept of a “business” layer as

distinct from the others. For simple applications, this layer is often skipped,

with the business logic being split between the controllers and domain ob-

jects. Thus, for purposes of his application, the controller models consist of

methods that display and manipulate domain objects based on user input.

Active Record

Active Record is a data access pattern. An active record is essentially a

domain object that encapsulates its own database representation, in contrast

to designs where database rows and domain objects are treated as distinct

7.5. SYSTEM DESIGN 109

entities. This pattern has the advantage of a relatively simple design and

works well when the object model and database schema are isomorphic.

In PHP, the dynamic nature of objects is often exploited when imple-

menting an Active Record pattern. Specifically, developers are able to take

advantage of the fact that PHP can create member variables dynamically,

and simply create the object fields on the fly rather than declaring them in

advance. A simple implementation of this might look like the following:

pub l i c func t i on loadUser ($ id) {

$ f i n d u s e r q u e r y = ’SELECT ∗ FROM use r s WHERE u s e r i d

= ? ’ ;

$ f i nd s ta t ement = $th i s−>db−>prepare ($ f i n d u s e r q u e r y

) ;

$ f ind statement−>execute (array ($ id)) ;

$ r e s u l t r o w = $f ind statement−>f e t c h () ;

f o r each ($ r e s u l t r o w as $name=>$value) {

$th i s−>$name = $value ;

}

}

The class method in this example loads member variables from a database

row. The database query returns an associative array, with field values in-

dexed by field name. Since PHP allows object variables to be referenced

indirectly, using string variables that contain the field name, it is possible

to iterate over the columns returned from the query and directly set a vari-

7.5. SYSTEM DESIGN 110

able of the corresponding name. As PHP also allows for dynamic variable

creation, it is not even necessary to declare these variables beforehand.

Such an approach has both advantages and drawbacks. The main advan-

tages are compactness and self-maintenance. For large database rows, this

makes the code for loading objects much shorter than explicitly referencing

each field. It also eliminates the need to make changes to this portion of

the data access code when the schema is updated. Similar tricks can be

performed with UPDATE and INSERT queries, where the data access code

queries the DBMS system tables to retrieve the table schema and build the

SQL statements, and then injects the values of fields with corresponding

names into the query. This approach provides an extremely easy to use data

access layer with little to no maintenance for simple changes such as adding

a column to a table.

The main disadvantage of this approach is that it is not immediately obvi-

ous what the object contains. The mapping from class members to database

fields is implicit, and so changes to the database schema have the potential

to affect the code in unforeseen ways. For purposes of this project, another

significant issue is that it is very difficult to model this dynamism using a

formal modeling language. Not only does the VDM++ notation lack a way

to describe dynamic variable creation, but it also lacks a similar concept

of indirect reference. However, as VDM++ is a modeling language, it is

antithetical to the purpose of the notation to directly represent particular

implementation patterns. It is more important to capture the features and

7.5. SYSTEM DESIGN 111

functionality of the system. For the detailed model, an explicit data access

model will be assumed.

7.5.2 Database Design

As with all web applications of any complexity, this system will require a

data store in the form of a relational database. While VDM++ does not offer

any special notation for relational database description, it is still possible to

model a database at various levels of detail.

For purposes of this application, it is not necessary to model the database

or data access at a low level. Rather, it will suffice to represent the struc-

ture and constraints on the database rows. This can be accomplished using

invariants on VDM++ types and instance variables.

A Database class can be defined to represent the database schema. The

structure of each table is defined using a VDM++ record type. These define

the names and data types of each column. For each row type, a corresponding

table type is defined, which is simply a set of the row type. Instance variables

of each of these table types represent the physical database tables.

Constraint Modeling

Constraints on the database tables can be represented by invariants on either

the table type or on the Database class instance variables. Which location

is appropriate depends on the constraint. For instance, the following invari-

ant on the UserTable type is used to capture a uniqueness constraint on

7.5. SYSTEM DESIGN 112

usernames:

public UserRow : :

username : seq o f char

password : seq o f char ;

public UserTable = s e t o f UserRow

inv u s r t b l == f o ra l l r , s in s e t u s r t b l &

r . username = s . username => r = s ;

Here a simple UserRow record type is defined, consisting of a username and

password. A UserTable type is then defined as a set of UserRow. Note that

the invariant here can be on the UserTable type because no other tables

need be involved.

The invariant asserts that for any two rows in a UserTable, if the user-

names are identical, then the rows are identical. Here the equality compar-

ison is interpreted as identity and not simply equivalence. This is implied

by UserTable being a set, which by definition does not contain duplicate

members. This technique can easily be extended to express more complex

uniqueness constraints, such as compound primary keys, simply by adding

ANDed equality comparisons to the antecedent of the logical implication.

Other types of constraints can also be modeled by table or row type

invariants. One example is simple CHECK constraints. For instance, the

system designer could express that the password field on a UserRow is meant

to contain an MD5 hash by including a clause in the type invariant such as

7.5. SYSTEM DESIGN 113

the following:

inv row == len row . password = 32 and

f o ra l l c in elems row . password & i s L e t t e r (c)

or i s D i g i t (c) ;

Here isLetter() and isDigit() return true if the character is a letter or

digit. Such functions do not map directly to anything in standard SQL, but

they are useful for capturing requirements. In many cases, it may be possible

to do checks of this kind with vendor-specific character handling functions

in a particular RDBMS. For instance, both MySQL and PostgreSQL offer

regular expression matching function that can be used to check for alpha-

numeric characters. Alternatively, the requirement could be enforced in code

rather than in the database.

More complex constraints involving other tables must be expressed as

invariants on the instance variables of the Database class. This is due to the

fact that, in this specification, database tables are represented by instance

variables, which cannot be referenced in type definitions. Perhaps the most

common such type of constraint is the foreign key. These can be expressed

by clauses in the class state invariant such as the following:

public Users : UserTable ;

public Documents : DocumentTable ;

inv

7.5. SYSTEM DESIGN 114

(f o ra l l d in s e t Documents &

exists u in s e t Users & d . owner = u . username) ;

In this listing, the invariant asserts that for every record in the Documents

table, there exists a row in the Users table that shares the same username as

the document owner. This captures the definition of a foreign key constraint

of the form:

FOREIGN KEY Documents (owner) REFERENCES Users (username)

ON UPDATE RESTRICT ON DELETE RESTRICT

The RESTRICT on updates and deletes is a consequence of the natural

meaning of the database state invariant, that is, the state cannot be changed

in a way that violates the invariant. The RESTRICT clause is the closest

match to this in SQL, and is also the default action for enforcing foreign key

constraints in most relational database systems.

Foreign key actions

For constraints that modify data, such as cascading deletes and updates, an

invariant will not suffice. It is necessary to use an operation to capture the

constraint. The following DeleteUser operation provides an example.

public

DeleteUser (key : S t r ing)

ext wr Users , Documents , GroupMembers

7.5. SYSTEM DESIGN 115

post Users = {u | u in s e t Users ˜ & u . username <> key}

and

Documents = {d | d in s e t Documents˜ & d . owner <>

key} union

{mk DocumentRow(d . id , d . t i t l e , d .

content , n i l) |

d in s e t Documents˜ & d . owner = key}

and

GroupMembers = {gm | gm in s e t GroupMembers˜ & gm.

user <> key } ;

The postcondition for this operation has three conjuncts. The first sub-

tracts the deleted user from the Users set, while the third enforces a cascad-

ing delete on the group members table. The second conjunct describes an ON

DELETE SET NULL condition, reconstructing the Documents table from two

set comprehensions: the rows not owned by the deleted user and the set of

record constructs that duplicate the rows owned by that user, but with the

username field set to null.

Data Access Modeling

Data access and storage can be modeled in a similar fashion. Modifications

to database tables can be described simply by modification of the table vari-

ables, while data retrieval can be modeled by creating subsets of the table

variables.

7.5. SYSTEM DESIGN 116

The iota expression is used to select a distinct value from a set. This

maps naturally to selection of a single row based on a primary key. The

following operation demonstrates this, returning the single UserRow tuple

that contains the appropriate username:

Se l e c tUse r (key : S t r ing) r : UserRow

ext rd Users

post r = i o t a u in s e t Users & u . username = key ;

Similarly, multi-record retrievals, which map to select queries returning

multiple rows, can be modeled with set comprehensions. For a single ta-

ble, the pattern is the same as for individual rows, except substituting set

comprehension for the iota expression. For example, the following operation

returns the set of documents for a particular user:

SelectDocumentByOwner (owner : S t r ing) r : s e t o f

DocumentRow

ext rd Documents

post r = {d | d in s e t Documents & d . owner = owner } ;

Similar techniques can be used to model more complicated database access.

For instance, nested set comprehensions and membership tests can be used

to select rows based on other tables, much like joins and subquery expression

in standard SQL.

7.5. SYSTEM DESIGN 117

7.5.3 Control Flow Modeling

Formal methods, including VDM++, are not commonly used to model the

user interface (UI) of an application. As UIs tends to be visually oriented,

mathematical methods are not well suited to the type of design they employ.

This application is no exception – as the user interface is not particularly

complex, there is little benefit to be had from attempting to model it in

detail.

There are, however, some aspects of the user interface which can be useful

to model. The first is control flow. The flow from one page to another has

implications for usability as well as security and access control. For legitimate

users, it is desirable that requests to disallowed resources do not simply fail,

but leave the application in a usable state, preferably with some indication

as to why the request failed. For malicious users, it is also important that

requests not simply fail because, if not properly handled, an uncontrolled

error could reveal information on potential attack vectors.

The second aspect is input specification. In some cases, it may also be

useful for a formal specification to indicate the required inputs and outputs

for each page, as well as any constraints on them. For lengthy or complex

data input requirements, this can make the required input validation more

explicit.

7.5. SYSTEM DESIGN 118

Explicit interface specification

There are any number of ways to model user inputs and control flow. The

most appropriate method will depend on the purpose of the formalization

and the complexity of the interface specification.

One method for detailed description of a page or screen of a user interface

is to model it as a VDM++ class. In this case, important input elements, such

as text boxes, can be modeled by instance variables. Simple data validation

rules can then be modeled as constraints on the instance variables, while more

complex validation and in-page modifications to controls can be handled as

operations.

It should be noted that this method is useful primarily in more com-

plicated scenarios. In simple cases where the user input mirrors a domain

object, i.e. there is a one-to-one relationship between the class members and

input controls, this is probably unnecessary. In such cases it may be clearer

to simply omit explicit UI consideration and rely on the validation rules for

the domain object.

Simple view modeling

The current application is simple enough that there is little to be gained by

a detailed description of the user interface. In such a case, input and control

flow information can be captured as part of the page design.

This can be best illustrated by an example. Consider the following excerpt

from the document editing page:

7.5. SYSTEM DESIGN 119

i f a c l . HasPermission (cu r r en t u s e r , doc , <ed i t >) then (

i f {” t i t l e ” , ”body”} subset dom POST then (

doc . t i t l e := POST(” t i t l e ”) ;

doc . content := POST(” body ”) ;

doc . Update () ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else (

view . Load (” document edit ”) ;

r e turn view . Render (doc)

)

) else

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

In this portion of the model, the current page performs a permission check

on the selected user and document. If the check fails, control is redirected

to an error page. In the case where the check succeeds, the inner “if” block

represents the self-posting behavior of the form. The required input fields

are indicated by the domain of the POST data. For the case where the

POST keys are present, the page updates the database and redirects to the

document viewing page. For the case where one or more of the required fields

is not present, the page loads and renders an input form.

7.5. SYSTEM DESIGN 120

Control flow requirements

Before proceeding, it is necessary to define requirements for the application

flow. This includes the enumeration of the pages in the application and how

control is transferred between them.

R15 Any request by a user who is not logged in will be redirected to the

login page.

R16 The system will have pages to create, edit, and delete documents; to

create and edit groups; to add and remove group members; and to

create new users and to log users in.

R17 On successful completion of a request, the pages in R16 will redirect

to the appropriate listing page. On failure, the input form will be

redisplayed.

R18 Input forms on the pages mentioned in R16 will submit to themselves.

R19 If a user does not have permission to edit or delete a document, requests

for those pages will be redirected to an error page.

R20 If a user is not an administrator, requests to the group and user man-

agement pages will be redirected to an error page.

For this system, the flow of control can be captured by a simple model

of the HTTP response returned for each page request. It is not necessary

to describe the exact content of the response, but rather its nature. In this

7.5. SYSTEM DESIGN 121

case, the critical data are whether the response is a display or a redirect, and

the type of display or target URL respectively. The response is thus modeled

as a simple two-field record type, with a response code to indicate a redirect

(HTTP 302 Redirect) or display (HTTP 400 OK) response and a body field

for the response text or redirect URL.

To condense and abstract the interface model, the simple response type is

combined with the View class, which represents the view in the Model-View-

Controller design. The View class has a Load method, which represents the

reading of a template file for a page. The Render method then converts the

loaded templates into a response to be sent to the client. To complement

this, the abstract ActionContorller class has a Redirect method, which

models redirection of the request to another page. These model the loading

and output of a page to the user. The name of the view loaded provides

information as to the nature of the page without detailing the precise content.

These methods are called in the concrete subclasses of ActionController.

They are used to indicate the display of input forms, listings, and redirection

on successful actions and security denials. This is most easily demonstrated

by the body of the Read method on the DocumentController class:

i f a c l . HasPermission (cu r r en t u s e r , doc , <read>) then (

view . Load (” document view ” , doc) ;

r e turn view . Render ()

) else

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”)

7.5. SYSTEM DESIGN 122

This method performs a simple permission check and then either renders the

document to be read or redirects to an permission denied page. Another

common example of this is checking the POST variable to see if it contains

form data and then processing the data or, if no data is present, displaying

the input form. Since the purpose is simply to signify the type of action to

be performed, this simple modeling will suffice.

8 Implementation of the

Formal Specification

Having constructed a detailed model of the system, the next phase of the

project is to implement the final system. The model will guide the imple-

mentation and serve as design documentation. This chapter will discuss

some of the considerations involved in this phase, including variations from

the model and issues not discovered until the implementation phase.

8.1 Approach

This project uses a light-weight, iterative approach to formal modeling, where

the modeling language is a specification and design tool. Thus, the implemen-

tation and design are not completely separate parts of system construction.

The general principle is that the model serves as a design tool and guide to

coding, but implementation issues can override the original design, requiring

it to be updated.

123

8.1. APPROACH 124

The general approach to the implementation portion of this project is

to treat the code as the final refinement of the formal design. The code

is therefore very similar to the detailed VDM++ model. In fact, in some

places, the PHP code is essentially a direct translation of the VDM++. This

similarity is particularly visible in the controller classes. The main purpose

of the controller methods is to glue the domain objects and user interface

together. Since the interfaces to the domain objects and inputs from the user

interface are the same in both the model and code, there is, in many cases,

no need to change the logic described in the model controllers.

There are several advantages to this approach. One benefit is that it

provides a very straight-forward development path. The bulk of the design

work is done in the modeling stage, so there is less to do and less chance

of introducing design errors in the implementation stage. The model could

be passed off to a junior or outsourced developer to be translated into code

without introducing undue risk of adding design defects late in the process.

This close correspondence to the implementation also allows the model

to serve as a type of low-level design documentation. Such documentation

can be useful to developers during implementation and maintenance, as well

as assisting with on-boarding of new staff. They can also be useful to quality

assurance staff as source material for the design of test cases, as the docu-

ments can provide information about edge cases and limitations that need

to be accounted for in testing.

However, there are some disadvantages to keeping the implementation

8.2. ARCHITECTURE AND DESIGN 125

close to the formal model. The primary drawback is that this approach limits

the implementation options and may make it difficult to take advantage of

certain features of the implementation language. This issue is magnified

in the case of highly dynamic languages such as PHP. It can be somewhat

difficult to model highly dynamic features in a static modeling language, so

in areas where these are useful, the correspondence to the model is not as

close.

8.2 Architecture and Design

The overall architecture of the system is essentially as described in the

component-level and detailed VDM++ models. It consists of three layers:

domain objects, user interface, and a controller layer connecting the other

two. These are supported by a front controller handling dispatching of re-

quests and a data access layer which encapsulates database queries. This

is a fairly standard architecture for PHP applications and is used in many

popular application development frameworks.

Due to the close correspondence between code and model, the classes

defined in the implementation are the same as those in the model. The

main differences are in the PHP and DB classes. The PHP class was omitted

from the implementation entirely. In the model, this class served mainly

as a representation of the run-time environment, and so was not necessary.

Likewise, the DB class in the model encapsulated both data access and the

8.3. DESIGN VARIATIONS 126

storage format for the data. In the final system implementation, this serves

only as a data access layer. The storage and organization of the data is left

to the database management system, so replicating this in code would be

redundant.

8.3 Design Variations

Despite the correspondence previously mentioned, there are several areas in

which the implementation differs from the model. In some cases, these dif-

ferences are due to simple convenience. Other differences are due to consid-

erations beyond the scope of the formal model. Some of these are described

below.

8.3.1 Addition of view logic

The modeling of the view layer of the application was quite simple, express-

ing only if a view should be loaded or if the request should be redirected.

However, in the actual implementation, there is a significant amount of pro-

gramming logic involved in the view templates. For instance, the correct

display of URLs in the view markup requires some processing based on the

configuration of the front controller. While it is possible to avoid this run-

time processing of URLs by simply writing the views with a static URL, this

requires more specific configuration of the web server. This is unnecessary

and undesirable, as it makes setup for development and test environments

8.3. DESIGN VARIATIONS 127

more complicated.

To this end, several methods and fields have been added to the FrontController

and ActionController classes as well as the View class, in particular the

route() and link() methods. These methods on the ActionController

class calculate the correct URLs for dynamic requests and static resources

respectively based on configuration settings. The configuration needed for

these methods is done on the FrontController, which passes this data on

to the concrete ActionController to which requests are dispatched. The

View class simply contains convenience wrapper methods that delegate back

to the controller.

8.3.2 Usability revisions

As user interface design and implementation progressed, it became clear that

some adjustments were necessary for the sake of usability and ease of man-

agement. These include adding listing pages for groups and listings of doc-

ument permissions. These pages were added to the formal model and then

implemented.

The pages in question were not themselves central to the functioning of

the system, but were useful primarily in terms of facilitating user interaction.

In other words, they served as a gateway or supporting interface to other fea-

tures. For instance, without some listing or search page, it is difficult to see

how a user might access the page to administer groups and view their mem-

bers. Since these pages do not offer conceptually important functionality,

8.3. DESIGN VARIATIONS 128

they did not stand out as areas in need of formal analysis.

This is in part a result of the approach to formalism – the goal of the

model was to clarify the system design, not to precisely specify all function-

ality. It is, therefore, not surprising that some aspects were overlooked in

the original model. There is, associated with this, a risk of overlooking unex-

pectedly complicated portions of the system. However, this can be addressed

by continuing to treat the formal model as a “live” document. Continuing

to update the model as part of the design process for changes raised in im-

plementation helps to maintain the other benefits of modeling.

8.3.3 Dynamic instantiation

While the VDM++ model includes a traditional static mapping for creating

and calling controller actions, the actual implementation uses a dynamic

method. This pattern is not uncommon in PHP applications and there are

several advantages to this approach. The most obvious is that it reduces

the maintenance requirements for the code – there is no mapping to update

when a new controller class or page request is added.

For purposes of mapping the specification to code, there is no easy way to

model this. As VDM++ has no notation for reflection or the ability to create

classes or call methods dynamically by name, modeling must be indirect. One

method is simply to explicitly define the mapping from URL strings to classes

and methods in the model. This captures the key pieces of data that need

to be conveyed, i.e. the mapping from URL to class methods, but not the

8.4. RESULTS 129

actual functioning of the front controller. The alternative method is to simply

declare reflection operations for checking the existence of classes and methods

and define the dispatcher in terms of those. Since these operations would be

either defined implicitly, or simply left undefined, this method would impede

using model animation to validate the system. However, it would also give a

more accurate picture of how the dispatcher actually functions.

8.3.4 Permission list population

Upon implementation of the formal specification, a key deficiency was noticed

in the handling of access control lists – they were not being populated. That

is, the routines to create and persist new documents did not account for

the initial set-up of a document’s ACL. So much focus was placed on the

authorization rules for retrieving documents, that setting the rules for each

new document was overlooked.

This issue was addressed by returning to the low-level formal model and

adding appropriate methods. In this case, a SetDefaultPermissions method

was added to the ACL class, while the Create and Edit methods of the

DocumentController class were updated to call it.

8.4 Results

The goal of this project was to demonstrate the useful application of light-

weight formal modeling to a typical information system. The VDM++ mod-

8.4. RESULTS 130

els were built as part of the design process, as tools for understanding the

system and requirements, not for actually validating system correctness. To

this end, the project was a modest success.

The high-level models were, in some ways, analogous to designing with

UML diagrams. In many places, they simply declared the classes to be used

and their methods and properties. While this is certainly useful information,

it is nothing that could not be more concisely displayed in UML. The only

real advantage to using VDM++ is for notational consistency with sections

of that system that benefit from more formalism, or simply for the sake of

completeness.

However, in the areas of the high-level specifications where detailed mod-

eling was done, it was found to be useful to the development process. VDM++

provided a sufficiently powerful, yet abstract, notation with which to describe

the essential characteristics of the system. The notation was flexible enough

to capture design decisions where desired while deferring decision on less

important aspects of the system.

At the code level, the detailed VDM++ specification was found to be very

useful. For the core server-side processing handled by the system, specifying

the individual operations in VDM++ during the design phase was found

to significantly reduce the effort required in the implementation phase. In

many areas, the implementation was simply a straight-forward translation

of the specification. This is particularly visible in areas such as the concrete

controller classes and the data access class. In the first case, the bulk of the

8.4. RESULTS 131

algorithm design was done in the VDM++ models, so the implementation in

PHP code was largely a translation of the model into code. In the second case,

the post-conditions could be easily mapped to SQL, making the conversion

to code relatively simple.

One circumstance in which this level of detail was useful was during a

delay in the implementation phase. At one point during the project, the

implementation was placed on hold for several weeks. When development

recommenced after this delay, the level of detail captured by the formal

model allowed work to continue with only minor interruption. Since the

formal model captured the design and intent of the code, there was no need

to re-evaluate the code or revisit design notes. This characteristic could be

very useful in organizations with with limited resources and rapidly shifting

priorities.

In this project, formal models were found to be useful as a design tool

and guide to implementation for a single-developer effort. The up-front effort

of building the formal models was found to be helpful and, qualitatively, to

reduce the amount of effort expended in the implementation phase.

9 Conclusion

Over the years, formal methods have proven their usefulness in industry.

This has been demonstrated by a large number of industrial case studies, in-

volving a variety of methods and notations, which have reported measurable

savings in development effort. Such cases are most common in large or criti-

cal systems, but not smaller information systems developed by small teams.

Small scale business systems, where there is little need for intensive formal

analysis, have typically not been considered the realm of formal methods.

Light-weight formal methods seem to hold the most promise for use in

typical small-scale projects. The literature suggests that these applications

of formalism can achieve meaningful results without requiring as large an

up-front investments of time and money in training as traditional “heavy-

weight” applications. This makes them more approachable and applicable to

individual programmers and small groups seeking to improve their process

quality.

The sample project described in the preceding chapters demonstrates the

applicability of light-weight formal modeling to a typical non-critical system

132

CHAPTER 9. CONCLUSION 133

using a modern dynamic language. It illustrates the use of formal models as

a software design tool, similar to UML and similar notations. In addition,

the project demonstrates the application of several common design patterns

to the formal model and translates them into the implementation. While the

designs decisions made here are not the only valid choices, these methods and

patterns are relatively common and idiomatic in the target implementation

language and can easily serve as a template to be adapted for use in other,

similar projects.

Further work in this area may include refinement and abstraction of the

modeling approach presented for this project. Expansion of the use of models

into proof and model animation would be a useful area of inquiry. There

are also opportunities for investigating alternative design approaches. For

instance, the project leaves room for other approaches to modeling data

access and representation of domain objects. There is an opportunity to

abstract the models and code from the base system to build a more reusable

framework. This project takes a step in that direction, but remained tied

to a particular system for purposes of demonstration. A fully generalized

framework for developing PHP applications, built on top of formal models,

would provide an excellent resource for evangelism of formal methods to

main-stream developers.

A Listing of system

requirements

A.1 Informal high-level requirements

I1 The system must support multiple users.

I2 The system must allow users to read, write, edit, and delete documents.

I3 It should be possible for documents to be made secure, so that only

selected users can view them.

I4 Only the person who created a document should be able to edit or

delete it.

I5 The owner of a document may grant other users permission to edit,

delete, or read it.

I6 System administrators should be able to change the permissions and

ownership of a document.

134

A.2. ELABORATED REQUIREMENTS 135

A.2 Elaborated requirements

R1 The system must have user accounts. (Implied by I1 above)

R2 The system must store documents. (Implied by I2 above)

R3 The system must support multiple concurrent users. (From I1 above)

R4 The system must allow for documents to be created, read, edited, or

deleted. (From I2 above)

R5 The system must restrict read/edit/delete operations on documents to

only specified users. (Generalization of I3 – I6 above).

R6 Documents must have an “owner”. (Implied by I4 – I6 above)

R7 Any user may create new documents. (Implied by I3 – I6 above)

R8 When a document is created, its owner is set to the user who created

it. (Implied by I4 above)

R9 The system must maintain a list of “permissions”, i.e. users who are

allowed to read/edit/delete each document. (Implied by I5 and I6

above)

R10 The system should maintain a list of users who are administrators.

(Implied by I6 above)

R11 The system should allow the owner of each document to modify per-

missions on that document. (From I5 above)

A.2. ELABORATED REQUIREMENTS 136

R12 The system should allow users who are administrators to modify own-

ership and permissions on any document. (From I6 above)

R13 The system should allow administrators to create groups of users.

R14 When setting permissions, users should be able to grant or deny access

too all members of a group.

R15 Any request by a user who is not logged in will be redirected to the

login page.

R16 The system will have pages to create, edit, and delete documents; to

create and edit groups; to add and remove group members; and to

create new users and to log users in.

R17 On successful completion of a request, the pages in R16 will redirect

to the appropriate listing page. On failure, the input form will be

redisplayed.

R18 Input forms on the pages mentioned in R16 will submit to themselves.

R19 If a user does not have permission to edit or delete a document, requests

for those pages will be redirected to an error page.

R20 If a user is not an administrator, requests to the group and user man-

agement pages will be redirected to an error page.

B Formal Models

The following sections contain code listings for the VDM++ models created

for this project. The code listings are word-wrapped to fit the page.

B.1 High-Level Specification

Listing B.1: spec.vdmpp

−− High−l e v e l s p e c i f i c a t i o n .

−− This t r a c e s out the key e n t i t i e s and operations that

make up the system .

−− The system w i l l have user accounts and a l low use r s

to l og in and out .

class User

i n s t ance v a r i a b l e s

public username : seq o f char := ”” ;

public password : seq o f char := ”” ;

137

B.1. HIGH-LEVEL SPECIFICATION 138

operations

public

Login : () ==> ()

Login () == i s not yet s p e c i f i e d ;

public

Logout : () ==> ()

Logout () == i s not yet s p e c i f i e d ;

end User

−− The system w i l l have documents .

class Document

in s t ance v a r i a b l e s

public t i t l e : seq o f char := ”” ;

public content : seq o f char := ”” ;

−− Documents w i l l be owned by a user account .

public owner : User ;

operations

public

B.1. HIGH-LEVEL SPECIFICATION 139

Document : seq o f char ∗ seq o f char ∗ User ==>

Document

Document (name , body , c u r r e n t u s e r) == (

t i t l e := name ;

content := body ;

owner := c u r r e n t u s e r ;

) ;

−− Create a new document

public

Create : () ==>()

Create () == i s not yet s p e c i f i e d ;

−− Delete an e x i s t i n g document

public

Delete : () ==> ()

De lete () == i s not yet s p e c i f i e d ;

−− Modify an e x i s t i n g document

public

Edit : () ==> ()

Edit () == i s not yet s p e c i f i e d ;

B.1. HIGH-LEVEL SPECIFICATION 140

−− Open an e x i s t i n g document f o r read ing .

public

Read : () ==> ()

Read () == i s not yet s p e c i f i e d ;

end Document

class Secur i ty

types

public AccessType = <read> | <ed i t> | <de l e t e >;

public AccessObject = User | Group ;

public Permiss ion = map (AccessObject ∗ Document)

to (map AccessType to bool) ;

i n s t ance v a r i a b l e s

−− The ad min i s t r a t i v e u s e r s

public admin i s t r a to r s : s e t o f User := {} ;

public groups : s e t o f Group:= {} ;

public permi s s i ons : Permiss ion := {|−>};

operations

B.1. HIGH-LEVEL SPECIFICATION 141

−− Check i f a user has permis s ion to a c c e s s a

document .

−− Checks both user and group permiss ions , g i v i ng

precedence to

−− i n d i v i d u a l user pe rmi s s i on s .

public

PermissionCheck (u : User , d : Document , t : AccessType

) r : bool

ext rd permiss ions , groups

post

r =

i f mk (u , d) in s e t dom permi s s i ons then

permi s s i ons (mk (u , d)) (t)

else

exists g in s e t groups &

mk (g , d) in s e t dom permi s s i on s and

u in s e t g . members and

permi s s i ons (mk (g , d)) (t) = true ;

−− Set a new permis s ion

public

SetPermiss ion (obj : AccessObject , d : Document , perm :

AccessType , s t a t u s : bool)

B.1. HIGH-LEVEL SPECIFICATION 142

ext wr permi s s i ons

post pe rmi s s i ons (mk (obj , d)) (perm) = s ta t u s ;

−− public

−− RemovePermission (obj : AccessObject , doc : Document

, perm : AccessType)

−− ext wr permi s s i ons

−− post not exists x in s e t rng pe rmi s s i ons & dom x

= perm ;

end Secu r i t y

−− Users can be aggregated in to groups f o r a c c e s s

c o n t r o l .

class Group

in s t ance v a r i a b l e s

public name : seq o f char ;

public members : s e t o f User ;

operations

public

Group : seq o f char ==> Group

Group (nm) == (

B.1. HIGH-LEVEL SPECIFICATION 143

name:= nm;

members:= {} ;

) ;

−− Add use r s to a group

public

AddUsers (us : s e t o f User)

ext wr members

post members = members˜ union us ;

−− Remove us e r s from a group

public

DeleteUsers (us : s e t o f User)

ext wr members

post members = members˜ \ us ;

end Group

−− Represents the system as a whole . This class

conta in s the top−l e v e l a c t i o n s

−− f o r each type o f e n t i t y .

class System

B.1. HIGH-LEVEL SPECIFICATION 144

types

P a g e S p e c i f i e r = <l i s t documents> | <read document>

| < l i s t g r o u p s > | <show group> | <l og in >;

i n s t ance v a r i a b l e s

s e c u r i t y : Se cu r i ty := new Secur i ty () ;

u s e r s : s e t o f User := {} ;

documents : s e t o f Document:= {} ;

c u r r e n t u s e r : [User] := n i l ;

next page : P a g e S p e c i f i e r := <l i s t documents >;

operations

−− Group operations −−

−− Create a new group

public

CreateGroup (name : seq o f char)

ext wr s e cu r i t y , next page

pre c u r r e n t u s e r in s e t s e c u r i t y . admin i s t r a t o r s

post next page = <show group> and exists g in s e t

s e c u r i t y . groups & g . name = name ;

B.1. HIGH-LEVEL SPECIFICATION 145

−− Add use r s to a group

public

AddUsersToGroup (g : Group , us : s e t o f User)

ext rd c u r r e n t u s e r

wr s e cu r i t y , next page

pre c u r r e n t u s e r in s e t s e c u r i t y . admin i s t r a t o r s

post next page = <show group> and us subset g .

members ;

−− Remove us e r s from a group

public

DeleteUsersFromGroup (g : Group , us : s e t o f User)

ext rd c u r r e n t u s e r

wr s e cu r i t y , next page

pre c u r r e n t u s e r in s e t s e c u r i t y . admin i s t r a t o r s

post next page = <show group> and g . members i n t e r

us = {} ;

−− Document s e c u r i t y operations −−

−− Change the owner o f the document .

public

ChangeOwner (d : Document , new owner : User)

B.1. HIGH-LEVEL SPECIFICATION 146

ext rd c u r r e n t u s e r

wr next page

pre c u r r e n t u s e r in s e t s e c u r i t y . admin i s t r a t o r s

post next page = <read document> and d . owner =

new owner ;

−− Set the pe rmi s s i ons on a document .

public

SetPermiss ion (d : Document , ug : Secur i ty ‘

AccessObject , type : Secur i ty ‘ AccessType , s t a t u s :

bool)

ext rd c u r r e n t u s e r

wr s e cu r i t y , next page

pre c u r r e n t u s e r in s e t s e c u r i t y . admin i s t r a t o r s or

c u r r e n t u s e r = d . owner

post next page = <read document> and s e c u r i t y .

pe rmi s s i ons (mk (ug , d)) (type) = s ta t u s ;

−− Authent icat ion operations

public

Login (username : seq o f char , password : seq o f char)

r : bool

B.1. HIGH-LEVEL SPECIFICATION 147

ext rd use r s

wr cu r r en t u s e r , next page

pre c u r r e n t u s e r = n i l

post next page = <l i s t documents> and

i f exists u in s e t u s e r s & u . username = username

and u . password = password then

c u r r e n t u s e r in s e t u s e r s and c u r r e n t u s e r .

username = username and r = true

else

c u r r e n t u s e r = n i l and r = f a l s e ;

public

Logout ()

ext wr cu r r en t u s e r , next page

post next page = <l og in> and c u r r e n t u s e r = n i l ;

−− Document operations

public

ListDocuments () r : s e t o f Document

ext rd s e cu r i t y , documents , c u r r e n t u s e r

pre c u r r e n t u s e r <> n i l

B.1. HIGH-LEVEL SPECIFICATION 148

post r = {d | d in s e t documents & s e c u r i t y .

PermissionCheck (cu r r en t u s e r , d , <read>)} ;

public

ReadDocument (d : Document) r : bool

ext rd s e cu r i t y , c u r r e n t u s e r

pre c u r r e n t u s e r <> n i l

post (s e c u r i t y . PermissionCheck (cu r r en t u s e r , d , <

read>) and r = true) or r = f a l s e ;

public

CreateDocument (t i t l e : seq o f char , body : seq o f

char)

ext rd c u r r e n t u s e r

wr documents , next page

pre c u r r e n t u s e r <> n i l

post next page = <read document> and

documents = documents˜ union {new Document (

t i t l e , body , c u r r e n t u s e r) } ;

public

EditDocument (d : Document , t i t l e : seq o f char , body :

seq o f char) r : bool

B.2. COMPONENT-LEVEL SPECIFICATION 149

ext rd s e cu r i t y , c u r r e n t u s e r

wr next page

pre c u r r e n t u s e r <> n i l

post next page = <read document> and

(s e c u r i t y . PermissionCheck (cu r r en t u s e r , d , <

ed i t >) and d . t i t l e = t i t l e and

d . content = body and r = true) or (r = f a l s e) ;

end System

B.2 Component-Level Specification

Listing B.2: spec-comp.vdmpp

−− Component−l e v e l s p e c i f i c a t i o n

−− This breaks down the system e n t i t i e s i n to modules ,

adding s epa ra t i on o f concerns .

−− Top−l e v e l ob j e c t r e p r e s e n t i n g entry po int in to

system .

class System

operations

B.2. COMPONENT-LEVEL SPECIFICATION 150

public I n i t : () ==> ()

I n i t () == i s not yet s p e c i f i e d ;

public Dispatch : seq o f char ∗ seq o f char ==> ()

Dispatch (c o n t r o l l e r , a c t i on) == i s not yet

s p e c i f i e d ;

end System

−− Since the s e c u r i t y module was de f ined in some d e t a i l

in the s p e c i f i c a i t o n model ,

−− i t i s unchanged in the component−l e v e l model .

class Secur i ty

types

public AccessType = <read> | <ed i t> | <de l e t e >;

public AccessObject = User | Group ;

public Permiss ion = map (AccessObject ∗ Document)

to (map AccessType to bool) ;

i n s t ance v a r i a b l e s

−− The ad min i s t r a t i v e u s e r s

public admin i s t r a to r s : s e t o f User := {} ;

public groups : s e t o f Group:= {} ;

B.2. COMPONENT-LEVEL SPECIFICATION 151

public permi s s i ons : Permiss ion := {|−>};

operations

−− Check i f a user has permis s ion to a c c e s s a

document .

−− Checks both user and group permiss ions , g i v i ng

precedence to

−− i n d i v i d u a l user pe rmi s s i on s .

public

PermissionCheck (u : User , d : Document , t : AccessType

) r : bool

ext rd permiss ions , groups

post

r =

i f mk (u , d) in s e t dom permi s s i ons then

permi s s i ons (mk (u , d)) (t)

else

exists g in s e t groups &

mk (g , d) in s e t dom permi s s i on s and

u in s e t g . members and

permi s s i ons (mk (g , d)) (t) = true ;

B.2. COMPONENT-LEVEL SPECIFICATION 152

−− Set a new permis s ion

public

SetPermiss ion (obj : AccessObject , d : Document , perm :

AccessType , s t a t u s : bool)

ext wr permi s s i ons

post pe rmi s s i ons (mk (obj , d)) (perm) = s ta t u s ;

−− public

−− RemovePermission (obj : AccessObject , doc : Document

, perm : AccessType)

−− ext wr permi s s i ons

−− post not exists x in s e t rng pe rmi s s i ons & dom x

= perm ;

end Secu r i t y

−− C o n t r o l l e r f o r users , d e f i n i n g key operations on

user accounts .

class UserCont ro l l e r

operations

public Create : () ==> ()

B.2. COMPONENT-LEVEL SPECIFICATION 153

Create () == i s not yet s p e c i f i e d ;

public Delete : () ==> ()

De lete () == i s not yet s p e c i f i e d ;

public Login : () ==> ()

Login () == i s not yet s p e c i f i e d ;

public Logout : () ==> ()

Logout () == i s not yet s p e c i f i e d ;

end Use rCont ro l l e r

−− C o n t r o l l e r f o r groups , d e f i n i n g key operations on

user groups .

class GroupControl ler

operations

public Create : () ==> ()

Create () == i s not yet s p e c i f i e d ;

public Delete : () ==> ()

B.2. COMPONENT-LEVEL SPECIFICATION 154

Delete () == i s not yet s p e c i f i e d ;

public AddUser : () ==> ()

AddUser () == i s not yet s p e c i f i e d ;

public DeleteUser : () ==> ()

DeleteUser () == i s not yet s p e c i f i e d ;

end GroupControl ler

−− C o n t r o l l e r f o r documents , d e f i n i n g key operations on

documents .

class DocumentControl ler

operations

public L i s t : () ==> ()

L i s t () == i s not yet s p e c i f i e d ;

public Create : () ==> ()

Create () == i s not yet s p e c i f i e d ;

public Delete : () ==> ()

B.2. COMPONENT-LEVEL SPECIFICATION 155

Delete () == i s not yet s p e c i f i e d ;

public Edit : () ==> ()

Edit () == i s not yet s p e c i f i e d ;

public Read : () ==> ()

Read () == i s not yet s p e c i f i e d ;

public SetPermis s ions : () ==> ()

SetPermis s ions () == i s not yet s p e c i f i e d ;

public ChangeOwner : () ==> ()

ChangeOwner () == i s not yet s p e c i f i e d ;

end DocumentControl ler

−− View class r e p r e s e n t i n g UI l a y e r .

−− At the cur r ent l e v e l o f d e t a i l , a l l t h i s does i s

output something .

class View

operations

public Display : () ==> ()

Display () == i s not yet s p e c i f i e d ;

B.2. COMPONENT-LEVEL SPECIFICATION 156

end View

−− Def ines the pattern used f o r the data a c c e s s o b j e c t s

.

class ActiveRecord

operations

public I n s e r t : () ==> ()

I n s e r t () == i s not yet s p e c i f i e d ;

public Update : () ==> ()

Update () == i s not yet s p e c i f i e d ;

public Delete : () ==> ()

De lete () == i s not yet s p e c i f i e d ;

end ActiveRecord

−− Represents documents with s e l f−p e r s i s t e n c e .

class Document i s s u b c l a s s o f ActiveRecord

in s t ance v a r i a b l e s

public t i t l e : seq o f char := ”” ;

public content : seq o f char := ”” ;

public owner : User ;

B.2. COMPONENT-LEVEL SPECIFICATION 157

end Document

−− Represents user accounts with s e l f−p e r s i s t e n c e .

class User i s s u b c l a s s o f ActiveRecord

in s t ance v a r i a b l e s

public username : seq o f char := ”” ;

public password : seq o f char := ”” ;

inv l en username > 0 ;

end User

−− Represents user groups with s e l f−p e r s i s t e n c e .

class Group i s s u b c l a s s o f ActiveRecord

in s t ance v a r i a b l e s

public name : seq o f char := ”” ;

public members : s e t o f User := {} ;

inv l en name > 0 ;

end Group

−− Def ines some o f the key t a b l e s in the database .

B.3. DETAILED SPECIFICATION 158

class Database

types

public Secur i tyRecord = Secur i ty ‘ AccessObject ∗

Document ∗ Secur i ty ‘ AccessType ∗ bool ;

i n s t ance v a r i a b l e s

public use r s : s e t o f User := {} ;

public groups : s e t o f Group:= {} ;

public documents : s e t o f Document:= {} ;

public permi s s i ons : s e t o f Secur i tyRecord := {} ;

inv (f o ra l l d in s e t documents & d . owner in s e t

u s e r s) and

(f o ra l l g in s e t groups & f o ra l l u in s e t g .

members & u in s e t u s e r s) ;

operations

end Database

B.3 Detailed Specification

B.3.1 Controller Classes

B.3. DETAILED SPECIFICATION 159

Listing B.3: Controllers/controller.vdmpp

−− Base ac t i on c o n t r o l l e r class .

−− I n i t i a l i z e s database connect ion and checks f o r a

logged−in user .

class Act ionCont ro l l e r i s s u b c l a s s o f PHP, BaseObject

i n s t ance v a r i a b l e s

protected c u r r e n t u s e r : [User] := n i l ;

protected db : DB:= new DB() ;

protected postdata : Array := POST;

public view : View:= new View () ;

operations

protected

Act ionCont ro l l e r : () ==> Act ionCont ro l l e r

Act i onCont ro l l e r () == (

c u r r e n t u s e r :=

i f Auth ‘CURR USER in s e t dom SESSION then

SESSION(Auth ‘CURR USER)

else

n i l ;

) ;

B.3. DETAILED SPECIFICATION 160

public

Redi rec t : S t r ing ==> Response

Red i rec t (u r l) == i s not yet s p e c i f i e d ;

public

Redi rec t : S t r ing ∗ BaseObject ==> Response

Red i rec t (ur l , obj) == i s not yet s p e c i f i e d ;

end Act i onCont ro l l e r

Listing B.4: Controllers/frontcontroller.vdmpp

−− The a p p l i c a t i o n f r o n t c o n t r o l l e r . This r e p r e s e n t s

the s i n g l e po int

−− o f entry to the a p p l i c a t i o n . I t per forms common

i n i t i a l i z a t i o n

−− and d i spa t che s r e q u e s t s to s epara t e c o n t r o l l e r s

based on the

−− r equ i r ed ac t i on .

class FrontCont ro l l e r i s s u b c l a s s o f PHP

in s tance v a r i a b l e s

B.3. DETAILED SPECIFICATION 161

functions

private

GetContro l l e r : S t r ing −> Act ionCont ro l l e r

GetContro l l e r (ctlname) ==

cas e s ctlname :

” user ” −> new UserCont ro l l e r () ,

”document” −> new DocumentControl ler () ,

”group” −> new GroupControl ler () ,

” index ” −> new IndexCont ro l l e r () ,

”” −> new IndexCont ro l l e r () ,

o the r s −> new Er ro rCont ro l l e r ()

end ;

−− S p l i t the URL in to i t s component paths , i . e .

−− r e turn the i t e n s between s l a s h e s as a l i s t .

private

SplitURL (u r l : S t r ing) r e t : seq o f S t r ing

pre l en u r l > 2 and ’/ ’ in s e t elems u r l and hd u r l

<> ’ / ’ and u r l (l en u r l) <> ’ / ’ −− URL must have

2 components , e . g . ’ a/b ’

post l en r e t >= 2 ;

B.3. DETAILED SPECIFICATION 162

operations

private

Cal lAct ion : Act i onCont ro l l e r ∗ St r ing ∗ seq o f

S t r ing ==> Response

Cal lAct ion (c t l , actname , data) == i s not yet

s p e c i f i e d ;

−− Parse the URL in to a c o n t r o l l e r and ac t i on and

d i spatch

public

Dispatch : S t r ing ==> Response

Dispatch (u r l) == (

dcl c t l : Act ionContro l l e r ,

u r ldata : seq o f S t r ing ;

u r ldata := SplitURL (u r l) ;

c t l := GetContro l l e r (u r ldata (1)) ;

−− Only s e l e c t e d methods o f the Use rCont ro l l e r

a l low anonymous l o g i n s .

−− For a l l others , r e d i r e c t to the l o g i n page .

i f not i s o f c l a s s (UserContro l l e r , c t l) and Auth ‘

CURR USER not in s e t dom SESSION then (

r e turn c t l . Red i rec t (”/ user / l o g i n /”) ;

B.3. DETAILED SPECIFICATION 163

) else

r e turn Cal lAct ion (c t l , u r lda ta (2) , t l u r ldata) ;

) ;

end FrontContro l l e r

Listing B.5: Controllers/documentcontroller.vdmpp

class DocumentControl ler i s s u b c l a s s o f

Act i onCont ro l l e r

functions

public

toArray : s e t o f DB‘ UserPermissionRow −> Array

toArray (row) == i s not yet s p e c i f i e d ;

public

toArray : s e t o f DB‘ GroupPermissionRow −> Array

toArray (row) == i s not yet s p e c i f i e d ;

operations

public

L i s t : () ==> Response

B.3. DETAILED SPECIFICATION 164

L i s t () == (

dcl doc : s e t o f Document:= Document ‘ GetAll () ,

showdocs : s e t o f Document ,

a c l : ACL:= new ACL() ;

showdocs := {d | d in s e t doc & a c l . HasPermission (

cu r r en t u s e r , d , <read>) } ;

view . Load (” document l i s t ” , PHP‘ toObj (showdocs)) ;

r e turn view . Render ()

)

pre c u r r e n t u s e r <> n i l ;

public

Read : nat ==> Response

Read (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

a c l : ACL:= new ACL() ;

i f a c l . HasPermission (cu r r en t u s e r , doc , <read>)

then (

view . Load (” document view ” , doc) ;

r e turn view . Render ()

) else

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”)

)

B.3. DETAILED SPECIFICATION 165

pre c u r r e n t u s e r <> n i l ;

public

Edit : nat ==> Response

Edit (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

a c l : ACL:= new ACL() ;

i f a c l . HasPermission (cu r r en t u s e r , doc , <ed i t >)

then (

i f {” t i t l e ” , ”body”} subset dom POST then (

doc . t i t l e := POST(” t i t l e ”) ;

doc . content := POST(” body ”) ;

doc . Update () ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else (

view . Load (” document edit ”) ;

r e turn view . Render ()

)

) else

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

) ;

public

B.3. DETAILED SPECIFICATION 166

Delete : nat ==> Response

Delete (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

a c l : ACL:= new ACL() ;

i f a c l . HasPermission (cu r r en t u s e r , doc , <de l e t e >)

then (

doc . De lete () ;

r e turn s e l f . Red i rec t (”/ document/ l i s t ”)

) else (

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”)

)

) ;

public

Create : () ==> Response

Create () == (

dcl doc : Document:= new Document () ,

a c l : ACL:= new ACL() ;

i f {” t i t l e ” , ”body”} subset dom POST then (

doc . t i t l e := POST(” t i t l e ”) ;

doc . content := POST(” body ”) ;

doc . owner := c u r r e n t u s e r ;

doc . I n s e r t () ;

B.3. DETAILED SPECIFICATION 167

a c l . Se tDe fau l tPermi s s i ons (doc) ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else (

view . Load (” document create ”) ;

r e turn view . Render ()

)

)

pre c u r r e n t u s e r <> n i l ;

public

ChangeOwner : nat ==> Response

ChangeOwner (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

usr : [User] ;

i f doc = n i l then

r e turn s e l f . Red i rec t (”/ e r r o r / inva l id document

/”) ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f ”username” in s e t dom POST then (

usr := User ‘ GetByName(POST(” username ”)) ;

i f usr <> n i l then (

doc . owner := usr ;

B.3. DETAILED SPECIFICATION 168

doc . Update () ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else (

view . Load (” document change owner ”) ;

r e turn view . Render ()

)

) else (

view . Load (” document change owner ”) ;

r e turn view . Render ()

)

) ;

public

SetUserPermiss ion : nat ==> Response

SetUserPermiss ion (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

usr : [User] ,

a c l : ACL:= new ACL() ,

perm : [ACL‘ Permiss ion] ,

s t a t u s : bool ;

i f doc = n i l then

r e turn s e l f . Red i rec t (”/ e r r o r / inva l id document

/”) ;

B.3. DETAILED SPECIFICATION 169

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () and

c u r r e n t u s e r <> doc . owner then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f {” user ” , ”perm ” , ” s t a t u s ”} subset dom POST

then (

usr := User ‘ GetByName(POST(” user ”)) ;

perm:= a c l . ToPermission (POST(”perm”)) ;

s t a t u s := POST(” s t a t u s ”) = ” granted ” ;

i f usr <> n i l and perm <> n i l then (

a c l . SetPermiss ion (usr , doc , perm , s t a t u s) ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else (

view . Load (” s e t u s e r p e r m i s s i o n ”) ;

r e turn view . Render ()

)

) else

view . Load (” s e t u s e r p e r m i s s i o n ”) ;

r e turn view . Render ()

) ;

public

SetGroupPermission : nat ==> Response

SetGroupPermission (id) == (

B.3. DETAILED SPECIFICATION 170

dcl doc : [Document] := Document ‘ GetById (id) ,

grp : [Group] ,

a c l : ACL:= new ACL() ,

perm : [ACL‘ Permiss ion] ,

s t a t u s : bool ;

i f doc = n i l then

r e turn s e l f . Red i rec t (”/ e r r o r / inva l id document

/”) ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () and

c u r r e n t u s e r <> doc . owner then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f {” group ” , ”perm ” , ” s t a t u s ”} subset dom POST

then (

grp := Group ‘ GetByName(POST(” user ”)) ;

perm:= a c l . ToPermission (POST(”perm”)) ;

s t a t u s := POST(” s t a t u s ”) = ” granted ” ;

i f grp <> n i l and perm <> n i l then (

a c l . SetPermiss ion (grp , doc , perm , s t a tu s) ;

r e turn s e l f . Red i rec t (”/ document/view /” , doc)

) else

view . Load (” s e t g r o up p e r m i s s i on ”) ;

r e turn view . Render ()

) else

B.3. DETAILED SPECIFICATION 171

view . Load (” s e t g r o up p e r m i s s i on ”) ;

r e turn view . Render ()

) ;

public

ChangePermissions : nat ==> Response

ChangePermissions (id) == (

dcl doc : [Document] := Document ‘ GetById (id) ,

userPerms : s e t o f DB‘ UserPermissionRow ,

groupPerms : s e t o f DB‘ GroupPermissionRow ;

i f (doc = n i l) then

r e turn s e l f . Red i rec t (”/ e r r o r / inva l id document

/”) ;

groupPerms:= db . SelectGroupPermissionByDocument (

doc . id) ;

userPerms := db . SelectUserPermissionByDocument (doc

. id) ;

view . Load (” document change group permiss ions ” ,

toArray (groupPerms)) ;

view . Load (” document change user permiss ions ” ,

toArray (userPerms)) ;

r e turn view . Render () ;

) ;

B.3. DETAILED SPECIFICATION 172

end DocumentControl ler

Listing B.6: Controllers/groupcontroller.vdmpp

class GroupControl ler i s s u b c l a s s o f Act i onCont ro l l e r

functions

public toArray : s e t o f Group −> Array

toArray (groups) == i s not yet s p e c i f i e d ;

public toArray : [Group] −> Array

toArray (groups) == i s not yet s p e c i f i e d ;

operations

public

L i s t : () ==> Response

L i s t () == (

dcl groups : s e t o f Group:= Group ‘ GetAll () ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

view . Load (” g r o u p l i s t ” , toArray (groups)) ;

r e turn view . Render () ;

B.3. DETAILED SPECIFICATION 173

) ;

public

Show : St r ing ==> Response

Show(groupname) == (

dcl g : [Group] := Group ‘ GetByName(groupname) ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

view . Load (” group show ” , toArray (g)) ;

r e turn view . Render () ;

) ;

public

Create : () ==> Response

Create () == (

dcl grp : Group:= new Group () ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f {”group name ” , ” d e s c r i p t i o n ”} subset dom POST

then (

grp . name:= POST(” group name ”) ;

grp . d e s c r i p t i o n := POST(” d e s c r i p t i o n ”) ;

grp . I n s e r t () ;

B.3. DETAILED SPECIFICATION 174

re turn s e l f . Red i rec t (”/ group/ l i s t /”) ;

) else (

view . Load (” g roup c r ea t e ”) ;

r e turn view . Render () ;

) ;

) ;

public

AddUser : S t r ing ==> Response

AddUser (groupname) == (

dcl g : [Group] := Group ‘ GetByName(groupname) ,

u : [User] ,

r e t : bool := f a l s e ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f g = n i l then

r e turn s e l f . Red i rec t (”/ e r r o r / i n v a l i d /”) ;

i f ”username” not in s e t dom POST then (

view . SetMessage (” f a i l u r e ”) ;

) else (

u:= User ‘ GetByName(POST(” username ”)) ;

i f u = n i l then (

view . SetMessage (” f a i l u r e ”) ;

B.3. DETAILED SPECIFICATION 175

) else (

r e t := g . Add(u) ;

i f r e t then view . SetMessage (” s u c c e s s ”) ;

i f not r e t then view . SetMessage (” f a i l u r e ”) ;

) ;

) ;

view . Load (” group show ”) ;

r e turn view . Render () ;

) ;

public

RemoveUser : S t r ing ==> Response

RemoveUser (groupname) == (

dcl g : [Group] := Group ‘ GetByName(groupname) ,

u : [User] ,

r e t : bool := f a l s e ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

i f g = n i l then

r e turn s e l f . Red i rec t (”/ e r r o r / i n v a l i d /”) ;

i f ”username” not in s e t dom POST then (

view . SetMessage (” f a i l u r e ”) ;

) else (

B.3. DETAILED SPECIFICATION 176

u:= User ‘ GetByName(POST(” username ”)) ;

i f u = n i l then (

view . SetMessage (” f a i l u r e ”) ;

) else (

r e t := g . Remove(u) ;

i f r e t then view . SetMessage (” s u c c e s s ”) ;

i f not r e t then view . SetMessage (” f a i l u r e ”) ;

) ;

) ;

view . Load (” group show ”) ;

r e turn view . Render () ;

) ;

end GroupControl ler

Listing B.7: Controllers/usercontroller.vdmpp

class UserCont ro l l e r i s s u b c l a s s o f Act i onCont ro l l e r

functions

public

toArray : s e t o f User −> BaseObject

toArray (u s e r s) == i s not yet s p e c i f i e d ;

operations

B.3. DETAILED SPECIFICATION 177

public

Create : () ==> Response

Create () == (

dcl usr : User := new User () ;

i f c u r r e n t u s e r = n i l or not c u r r e n t u s e r .

I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”)

else i f not {”username ” , ”password ” , ” conf i rm ”}

subset dom POST then (

i f POST(” password ”) = POST(” conf i rm ”) then (

usr . username:= POST(” username ”) ;

usr . SetPassword (POST(” password ”)) ;

usr . I n s e r t () ;

−− Reload view with s u c c e s s message

) ;

view . Load (” u s e r c r e a t e ”) ;

r e turn view . Render ()

)

)

pre c u r r e n t u s e r <> n i l ;

public

B.3. DETAILED SPECIFICATION 178

L i s t : () ==> Response

L i s t () == (

dcl use r s : s e t o f User := User ‘ GetAll () ;

i f not c u r r e n t u s e r . I sAdmin i s t ra to r () then

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”) ;

view . Load (” u s e r l i s t ” , toArray (u s e r s)) ;

)

pre c u r r e n t u s e r <> n i l ;

public

ChangePassword : PHP‘ St r ing ==> Response

ChangePassword (username) == (

dcl usr : [User] := User ‘ GetByName(username) ;

i f c u r r e n t u s e r = n i l or not c u r r e n t u s e r .

I sAdmin i s t ra to r () then (

r e turn s e l f . Red i rec t (”/ e r r o r / denied /”)

) ;

i f usr = n i l then (

r e turn s e l f . Red i rec t (”/ e r r o r / i n v a l i d u s e r /”) ;

) ;

i f not {” password ” , ” conf i rm ”} subset dom POST

and

POST(” password ”) = POST(” conf i rm ”) then (

B.3. DETAILED SPECIFICATION 179

usr . SetPassword (POST(” password ”)) ;

usr . Save () ;

r e turn s e l f . Red i rec t (”/ user / l i s t /”) ;

) else (

view . Load (” user password ”) ;

r e turn view . Render () ;

) ;

)

pre c u r r e n t u s e r <> n i l and c u r r e n t u s e r .

I sAdmin i s t ra to r () ;

public

Login : () ==> Response

Login () == (

dcl l o g g e d i n : bool := f a l s e ;

i f not {”username ” , ”password ”} subset dom POST

then (

view . Load (” u s e r l o g i n ”) ;

r e turn view . Render ()

) else (

l o g g e d i n := Auth ‘ Login (POST(” username ”) , POST(”

password ”)) ;

B.3. DETAILED SPECIFICATION 180

i f l o g g e d i n then (

c u r r e n t u s e r := User ‘ GetByName(POST(” username

”)) ;

r e turn s e l f . Red i rec t (”/ document/ l i s t /”)

) else (

view . Load (” u s e r l o g i n ”) ;

r e turn view . Render ()

)

)

)

pre c u r r e n t u s e r = n i l ;

public

Logout : () ==> Response

Logout () == (

c u r r e n t u s e r := n i l ;

Auth ‘ Logout () ;

r e turn s e l f . Red i rec t (”/ user / l o g i n /”)

) ;

end Use rCont ro l l e r

B.3. DETAILED SPECIFICATION 181

Listing B.8: Controllers/indexcontroller.vdmpp

class IndexCont ro l l e r i s s u b c l a s s o f Act i onCont ro l l e r

operations

public

L i s t : () ==> Response

L i s t () == (

view . Load (” index ”) ;

r e turn view . Render ()

) ;

end IndexCont ro l l e r

Listing B.9: Controllers/errorcontroller.vdmpp

class Erro rCont ro l l e r i s s u b c l a s s o f Act i onCont ro l l e r

operations

public

Permiss ionDenied : () ==> Response

Permiss ionDenied () == (

view . Load (” e r r o r p e r m i s s i o n d e n i e d ”) ;

r e turn view . Render ()

B.3. DETAILED SPECIFICATION 182

) ;

public

Inval idData : () ==> Response

Inval idData () == (

view . Load (” e r r o r i n v a l i d d a t a ”) ;

r e turn view . Render ()

) ;

end Er ro rCont ro l l e r

B.3.2 Model Classes

Listing B.10: Models/document.vdmpp

class Document i s s u b c l a s s o f DataModel , BaseObject

i n s t ance v a r i a b l e s

public id : nat ;

public t i t l e : PHP‘ St r ing := ”” ;

public content : PHP‘ St r ing := ”” ;

public owner : User ;

operations

B.3. DETAILED SPECIFICATION 183

Document : DB‘ DocumentRow ==> Document

Document (row) == (

id := row . id ;

t i t l e := row . t i t l e ;

content := row . content ;

owner := User ‘ GetByName(row . owner) ;

) ;

Document : PHP‘ St r ing ∗ PHP‘ St r ing ∗ User ==>

Document

Document (t , c , o) == (

t i t l e := t ;

content := c ;

owner := o

) ;

private s t a t i c

DocumentExists (docid : nat , dbconn : DB) r : bool

post r = exists d in s e t dbconn . Documents & d . id =

docid ;

public s t a t i c

GetById : nat ==> [Document]

B.3. DETAILED SPECIFICATION 184

GetById (docid) == (

dcl d : DB:= new DB() ;

i f DocumentExists (docid , d) then

r e turn new Document (d . SelectDocument (docid))

else

r e turn n i l

) ;

public s t a t i c

GetAll : () ==> s e t o f Document

GetAll () == (

dcl dbconn : DB:= new DB() ;

r e turn {new Document (row) | row in s e t dbconn .

Documents}

) ;

public

I n s e r t : () ==> ()

I n s e r t () == (

dcl row : DB‘ DocumentRow:= mk DB‘ DocumentRow(s e l f .

id , s e l f . t i t l e , s e l f . content , s e l f . owner .

username) ;

db . InsertDocument (row) ;

B.3. DETAILED SPECIFICATION 185

) ;

public

Update : () ==> ()

Update () == (

dcl row : DB‘ DocumentRow:= mk DB‘ DocumentRow(s e l f .

id , s e l f . t i t l e , s e l f . content , s e l f . owner .

username) ;

db . UpdateDocument (s e l f . id , row) ;

) ;

public

Save : () ==> ()

Save () == (

i f exists row in s e t db . Documents & row . id = s e l f

. id then

I n s e r t ()

else

Update ()

) ;

public

Delete : () ==> ()

B.3. DETAILED SPECIFICATION 186

Delete () == (

db . DeleteDocument (s e l f . id)

) ;

end Document

Listing B.11: Models/group.vdmpp

class Group i s s u b c l a s s o f PHP, DataModel

i n s t ance v a r i a b l e s

public name : S t r ing := ”” ;

public d e s c r i p t i o n : S t r ing := ”” ;

operations

public

Group : DB‘ GroupRow ==> Group

Group (row) == (

name:= row . name ;

d e s c r i p t i o n := row . desc ;

) ;

public

IsMember (u : User) r : bool

B.3. DETAILED SPECIFICATION 187

ext rd db , name

post r = (exists row in s e t db . GroupMembers & row .

user = u . username and row . group = name) ;

public

GetMembers () r : s e t o f User

ext rd db , name

post r = {User ‘ GetByName(gm. user) | gm in s e t db .

GroupMembers & gm. group = name} ;

public

Add : User ==> bool

Add(u) == (

return db . InsertGroupMember (mk DB‘ GroupMemberRow(

s e l f . name , u . username)) ;

)

post db . GroupMembers = db . GroupMembers union {mk DB

‘ GroupMemberRow(s e l f . name , u . username) } ;

public

Remove : User ==> bool

Remove(u) == (

B.3. DETAILED SPECIFICATION 188

re turn db . DeleteGroupMember (s e l f . name , u . username

) ;

)

post db . GroupMembers = db . GroupMembers \ {mk DB‘

GroupMemberRow(s e l f . name , u . username) } ;

public s t a t i c

GetByName : S t r ing ==> [Group]

GetByName(grpname) == (

dcl d : DB:= new DB() ;

i f exists g in s e t d . Groups & g . name = grpname

then

let row in s e t d . Groups be s t row . name =

grpname in

re turn new Group (row)

else

r e turn n i l

) ;

public s t a t i c

GetAll : () ==> s e t o f Group

GetAll () == (

dcl dbconn : DB:= new DB() ;

B.3. DETAILED SPECIFICATION 189

re turn {new Group (row) | row in s e t dbconn . Groups

}

) ;

public

I n s e r t : () ==> ()

I n s e r t () == (

dcl row : DB‘ GroupRow:= mk DB‘ GroupRow(s e l f . name ,

s e l f . d e s c r i p t i o n) ;

db . InsertGroup (row) ;

) ;

public

Update : () ==> ()

Update () == (

dcl row : DB‘ GroupRow:= mk DB‘ GroupRow(s e l f . name ,

s e l f . d e s c r i p t i o n) ;

db . UpdateGroup (s e l f . name , row) ;

) ;

end Group

B.3. DETAILED SPECIFICATION 190

Listing B.12: Models/user.vdmpp

−− Represents a user in the system .

−− F u l f i l l s requ i rements : 1

class User i s s u b c l a s s o f BaseObject , DataModel

va lue s

−− Length f o r pasword hashes , we assume MD5.

PW HASH LENGTH: i n t = 32 ;

AUTH TOK NAME: PHP‘ St r ing = ”auth ” ;

i n s t ance v a r i a b l e s

public username : PHP‘ St r ing ;

public password : PHP‘ St r ing ;

functions

−− Calcu la te a hash value f o r a s t r i n g

public s t a t i c

hash (data : PHP‘ St r ing) r : PHP‘ St r ing

pre l en data > 0

post l en r = PW HASH LENGTH ;

operations

B.3. DETAILED SPECIFICATION 191

private s t a t i c

UserEx i s t s (name : PHP‘ Str ing , d : DB) r : bool

post r = exists u in s e t d . Users & u . username =

name ;

public

User : () ==> User

User () == (

username:= ”” ;

password := ”” ;

) ;

public

User : DB‘ UserRow ==> User

User (row) == (

username:= row . username ;

password := row . password ;

) ;

−− Change the user ’ s s to r ed password to use the

g iven s t r i n g .

public

B.3. DETAILED SPECIFICATION 192

SetPassword (pass : PHP‘ St r ing)

ext wr password

post password = hash (pass) ;

public

CheckPassword (pass :PHP‘ St r ing) r : bool

ext rd password

post r = (hash (pass) = password) ;

−− Get the l i s t o f groups to which t h i s user

be longs

public

GetGroups () r : s e t o f Group

ext rd db , username

post r = {Group ‘ GetByName(g . group) | g in s e t db .

GroupMembers & g . user = username } ;

−− Determine i f t h i s user i s an admin i s t ra to r

public

I sAdmin i s t ra to r () r : bool

ext rd db , username

post r = (exists g in s e t GetGroups () & g . name = ”

admin i s t r a to r s ”) ;

B.3. DETAILED SPECIFICATION 193

public s t a t i c

GetByName : S t r ing ==> [User]

GetByName(name) == (

dcl d : DB:= new DB() ;

i f UserEx i s t s (name , d) then

let r in s e t d . Users be s t r . username = name in

re turn new User (r)

else

r e turn n i l

) ;

public s t a t i c

GetAll : () ==> s e t o f User

GetAll () == (

dcl d : DB:= new DB() ;

r e turn {new User (r) | r in s e t d . Users}

) ;

public

I n s e r t : () ==> ()

I n s e r t () == (

B.3. DETAILED SPECIFICATION 194

dcl row : DB‘ UserRow:= mk DB‘ UserRow(s e l f . username

, s e l f . password) ;

db . In s e r tUse r (row) ;

) ;

public

Update : () ==> ()

Update () == (

dcl row : DB‘ UserRow:= mk DB‘ UserRow(s e l f . username

, s e l f . password) ;

db . UpdateUser (s e l f . username , row) ;

) ;

public

Save : () ==> ()

Save () == (

i f exists row in s e t db . Users & row . username =

s e l f . username then

I n s e r t ()

else

Update ()

) ;

B.3. DETAILED SPECIFICATION 195

end User

B.3.3 Other Classes

Listing B.13: activerecord.vdmpp

class ActiveRecord i s s u b c l a s s o f DB

types

public DataRow = map PHP‘ St r ing to PHP‘ Sca l a r ;

i n s t ance v a r i a b l e s

protected db : DB:= new DB() ;

public id : nat := 0 ;

operations

public

Save : () ==> ()

Save () == i s s u b c l a s s r e s p o n s i b i l i t y ;

public

Update : () ==> ()

Update () == i s s u b c l a s s r e s p o n s i b i l i t y ;

B.3. DETAILED SPECIFICATION 196

public

I n s e r t : () ==> ()

I n s e r t () == i s s u b c l a s s r e s p o n s i b i l i t y ;

end ActiveRecord

Listing B.14: auth.vdmpp

−− This class handles au then t i c a t i ng a user s e s s i o n

−− aga in s t the a p p l i c a t i o n .

class Auth i s s u b c l a s s o f PHP

va lues

public CURR USER: St r ing = ” c u r r e n t u s e r ” ;

TOKEN NAME: St r ing = ” l o g g e d i n ” ;

COOKIE NAME: St r ing = ” l o g i n t o k e n ” ;

i n s t ance v a r i a b l e s

functions

operations

−− Determine i f a v a l i d l o g i n cook i e i s p re sent .

B.3. DETAILED SPECIFICATION 197

public s t a t i c

HasLoginCookie () r : bool

post r = (exists c in s e t Cl i entCook ie s &

c . name = COOKIE NAME and c . c o o k i e I s V a l i d ()) ;

−− Determine i f a v a l i d l o g i n token i s pre sent in

e i t h e r

−− the s e s s i o n or a c l i e n t cook i e .

public s t a t i c

IsLoggedIn () r : bool

post r = (SESSION(TOKEN NAME) = true or

HasLoginCookie ()) ;

−− Log in the user and s e t the au then t i c a t i on token

.

−− Takes an opt i ona l parameter to ”remember” the

user

−− l o g i n in a c l i e n t cook i e .

public s t a t i c

Login : S t r ing ∗ St r ing ∗ bool ==> bool

Login (uname , pw, remember) == (

dcl usr : [User] ;

usr := User ‘ GetByName(uname) ;

B.3. DETAILED SPECIFICATION 198

i f usr = n i l then (

r e turn f a l s e

) else i f usr . password = pw then (

SESSION:= SESSION ++ {Auth ‘CURR USER |−>usr .

username } ;

i f remember then Cookie ‘ SetCookie (COOKIE NAME,

usr . username) ;

r e turn true

) else r e turn f a l s e

) ;

−− Overload f o r d e f a u l t va lue o f op t i ona l th i rd

parameter .

−− Would t h i s be b e t t e r expres sed as a n u l l a b l e

parameter ?

public s t a t i c

Login : S t r ing ∗ St r ing ==> bool

Login (uname , pw) == return Login (uname , pw, f a l s e) ;

−−− Destroy the user ’ s au then t i c a t i on tokens .

public s t a t i c

Logout ()

post TOKEN NAME not in s e t dom SESSION and

B.3. DETAILED SPECIFICATION 199

not HasLoginCookie () ;

end Auth

Listing B.15: cookie.vdmpp

class Cookie

i n s t ance v a r i a b l e s

public name : PHP‘ St r ing := ”” ;

public va l : PHP‘ St r ing := ”” ;

public exp i r e : PHP‘ Timestamp:= 0 ;

public domain : PHP‘ St r ing := ”” ;

functions

public

now : () −> i n t

now () == i s not yet s p e c i f i e d ;

operations

public

Cookie : PHP‘ St r ing ∗ PHP‘ St r ing ==> Cookie

Cookie (n , v) == (

B.3. DETAILED SPECIFICATION 200

name:= n ;

va l := v ;

) ;

public

Cookie : PHP‘ St r ing ∗ PHP‘ St r ing ∗ PHP‘ Timestamp ==>

Cookie

Cookie (n , v , e) == (

name:= n ;

va l := v ;

exp i r e := e ;

) ;

public

c o o k i e I s V a l i d () r : bool

ext rd exp i r e

post r = (exp i r e < now ()) ;

public s t a t i c

SetCookie : PHP‘ St r ing ∗ PHP‘ St r ing ==> ()

SetCookie (cname , cva l) == i s not yet s p e c i f i e d ;

public s t a t i c

B.3. DETAILED SPECIFICATION 201

SetCookie : PHP‘ St r ing ∗ PHP‘ St r ing ∗ nat ==> ()

SetCookie (cname , cval , c e x p i r e) == i s not yet

s p e c i f i e d ;

end Cookie

Listing B.16: datamodel.vdmpp

class DataModel i s s u b c l a s s o f PHP

types

public DataRow = DB‘ UserRow | DB‘ DocumentRow | DB‘

GroupRow | DB‘ GroupMemberRow |

DB‘ UserPermissionRow | DB‘

GroupPermissionRow ;

public DataTable = DB‘ UserTable | DB‘ DocumentTable

| DB‘ GroupTable | DB‘ GroupMemberTable |

DB‘ UserPermiss ionTable | DB‘

GroupPermissionTable ;

i n s t ance v a r i a b l e s

protected db : DB:= new DB() ;

B.3. DETAILED SPECIFICATION 202

operations

end DataModel

Listing B.17: db.vdmpp

class DB i s s u b c l a s s o f PHP

types

public UserRow : :

username : S t r ing

password : S t r ing

inv row == len row . password = 32 and

f o ra l l c in s e t elems row . password &

isUpper (c) or i s D i g i t (c) ;

public DocumentRow : :

id : nat

t i t l e : S t r ing

content : S t r ing

owner : [S t r ing] ;

B.3. DETAILED SPECIFICATION 203

public GroupRow : :

name : S t r ing

desc : S t r ing ;

public GroupMemberRow : :

group : S t r ing

user : S t r ing ;

public UserPermissionRow : :

document id : nat

username : S t r ing

permis s ion : ACL‘ Permiss ion

granted : bool ;

public GroupPermissionRow : :

document id : nat

group name : S t r ing

permis s ion : ACL‘ Permiss ion

granted : bool ;

public GroupDocumentRow : :

group : GroupRow

document : DocumentRow ;

B.3. DETAILED SPECIFICATION 204

public UserTable = s e t o f UserRow

inv u s r t b l == f o ra l l r , s in s e t u s r t b l & r .

username = s . username => r = s ;

public DocumentTable = s e t o f DocumentRow

inv doctb l == f o ra l l r , s in s e t doctb l & r . id = s .

id => r = s ;

public GroupTable = s e t o f GroupRow

inv grp tb l == f o ra l l r , s in s e t g rp tb l & r . name =

s . name => r = s ;

public GroupMemberTable = s e t o f GroupMemberRow

inv grpmemtbl == f o ra l l r , s in s e t grpmemtbl &

(r . group = s . group and r . user = s . user) => r = s ;

public UserPermiss ionTable = s e t o f

UserPermissionRow

inv userpermtbl == f o ra l l r , s in s e t userpermtbl &

(r . document id = s . document id and r . username = s .

username

B.3. DETAILED SPECIFICATION 205

and r . permis s ion = s

. permis s ion) => r

= s ;

public GroupPermissionTable = s e t o f

GroupPermissionRow

inv grppermtbl == f o ra l l r , s in s e t grppermtbl &

(r . document id = s . document id and r . group name = s

. group name

and r . permis s ion = s

. permis s ion) => r

= s ;

i n s t ance v a r i a b l e s

public Users : UserTable := {} ;

public Documents : DocumentTable := {} ;

public Groups : GroupTable := {} ;

public GroupMembers : GroupMemberTable:= {} ;

public UserPermiss ions : UserPermiss ionTable := {} ;

public GroupPermissions : GroupPermissionTable := {} ;

inv

B.3. DETAILED SPECIFICATION 206

−− Foreign key Documents to Users

(f o ra l l d in s e t Documents & d . owner = n i l or (

exists u in s e t Users & d . owner = u . username))

and

−− Foreign key GroupMembers to Users and to Groups

(f o ra l l m in s e t GroupMembers & (exists u in s e t

Users & u . username = m. user) and

(exists g in s e t

Groups & g . name

= m. group)) and

−− Username and password not n u l l

(f o ra l l u in s e t Users & u . username <> ”” and u .

password <> ””) and

−− Unique group name

(card {g . name | g in s e t Groups} = card Groups) and

−− Group name not n u l l

(f o ra l l g in s e t Groups & g . name <> ””) and

−− Group permis s ion f o r e i g n keys to Groups and

Documents

(f o ra l l p in s e t GroupPermissions & (exists g in

s e t Groups & g . name = p . group name) and

(exists d in

s e t

B.3. DETAILED SPECIFICATION 207

Documents &

d . id = p .

document id)

) and

−− User permis s ion f o r e i g n keys to Users and

Documents

(f o ra l l p in s e t UserPermiss ions & (exists u in s e t

Users & u . username = p . username) and

(exists d in s e t

Documents &

d . id = p .

document id)

) ;

functions

s t a t i c public

i sUpper (c : char) r : bool

post r = (c in s e t { ’A’ , ’B’ , ’C’ , ’D’ , ’E’ , ’ F ’ , ’G’ ,

’H’ , ’ I ’ , ’ J ’ , ’K’ , ’ L ’ , ’M’ , ’N’ ,

’O’ , ’P’ , ’Q’ , ’R’ , ’ S ’ , ’T’ , ’U’ ,

’V’ , ’W’ , ’X’ , ’Y’ , ’ Z ’ }) ;

B.3. DETAILED SPECIFICATION 208

s t a t i c public

i sLower (c : char) r : bool

post r = (c in s e t { ’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ ,

’h ’ , ’ i ’ , ’ j ’ , ’ k ’ , ’ l ’ , ’m’ , ’ n ’ ,

’ o ’ , ’ p ’ , ’ q ’ , ’ r ’ , ’ s ’ , ’ t ’ , ’ u ’ ,

’ v ’ , ’w’ , ’ x ’ , ’ y ’ , ’ z ’ }) ;

s t a t i c public

i s D i g i t (c : char) r : bool

post r = (c in s e t

{ ’ 0 ’ , ’ 1 ’ , ’ 2 ’ , ’ 3 ’ , ’ 4 ’ , ’ 5 ’ , ’ 6 ’ , ’ 7 ’ , ’ 8 ’ , ’ 9 ’}) ;

operations

public

Se l e c tUse r (key : S t r ing) r : UserRow

ext rd Users

post r = i o t a u in s e t Users & u . username = key ;

public

UpdateUser (key : Str ing , data : UserRow)

ext wr Users

B.3. DETAILED SPECIFICATION 209

post l et row = i o t a u in s e t Users & u . username =

key in

row . username = data . username and row .

password = data . password ;

public

In s e r tUse r (u : UserRow)

ext wr Users

pre not exists ur in s e t Users & ur . username = u .

username

post Users = Users ˜ union {u } ;

public

DeleteUser (key : S t r ing)

ext wr Users , Documents , GroupMembers

post Users = {u | u in s e t Users ˜ & u . username <>

key} and

−− ON DELETE SET NULL act i on on f o r e i g n key

from Documents

Documents = {d | d in s e t Documents˜ & d . owner

<> key} union

{mk DocumentRow(d . id , d . t i t l e , d .

content , n i l) |

B.3. DETAILED SPECIFICATION 210

d in s e t Documents˜ & d . owner =

key} and

−− ON DELETE CASCADE act i on on f o r e i g n key

from GroupMembers

GroupMembers = {gm | gm in s e t GroupMembers˜ &

gm. user <> key } ;

public

SelectDocument (id : nat) r : DocumentRow

ext rd Documents

post r = i o t a d in s e t Documents & d . id = id ;

public

SelectDocumentByOwner (owner : S t r ing) r : s e t o f

DocumentRow

ext rd Documents

post r = {d | d in s e t Documents & d . owner = owner

} ;

public

SelectDocumentsByGroup (group : S t r ing) r : s e t o f

GroupDocumentRow

ext rd Documents , Groups , GroupMembers

B.3. DETAILED SPECIFICATION 211

post r = {mk GroupDocumentRow(g , d) | g in s e t

Groups , d in s e t Documents , gm in s e t

GroupMembers &

gm. user = d .

owner and

gm. group =

g . name

and g . name

= group } ;

public

SelectReadableDocuments (user : S t r ing) r : s e t o f

DocumentRow

ext rd Documents , GroupMembers , UserPermiss ions ,

GroupPermissions

post r = {d | d in s e t Documents &

(exists up in s e t UserPermiss ions &

up . document id = d . id and

up . username = user

and up .

permis s ion = <

read> and up .

granted) or

B.3. DETAILED SPECIFICATION 212

(exists gp in s e t GroupPermissions &

gp . document id = d . id and

gp . group name in

s e t {g . group | g

in s e t

GroupMembers & g

. user = user }

and

gp . permis s ion = <

read> and gp .

granted) } ;

public

InsertDocument (d : DocumentRow)

ext wr Documents

rd Users

pre exists u in s e t Users & u . username = d . owner

post Documents = Documents˜ union {d} and

−− I n c r e a s i n g auto−increment key

f o ra l l row in s e t Documents˜ & d . id > row . id ;

public

UpdateDocument (key : nat , data : DocumentRow)

B.3. DETAILED SPECIFICATION 213

ext wr Documents , Users

pre exists u in s e t Users & u . username = data .

owner

post l et row = i o t a d in s e t Documents & d . id = key

in

row . id = data . id and row . t i t l e = data .

t i t l e and

row . content = data . content and row . owner =

data . owner ;

public

DeleteDocument (id : nat)

ext wr Documents , UserPermiss ions , GroupPermissions

post Documents = {d | d in s e t Documents˜ & d . id =

id } and

UserPermiss ions = {up | up in s e t

UserPermiss ions ˜ & up . document id <> id }

and

GroupPermissions = {gp | gp in s e t

GroupPermissions ˜ & gp . document id <> id } ;

public

SelectGroup (name : S t r ing) r : GroupRow

B.3. DETAILED SPECIFICATION 214

ext rd Groups

post r = i o t a g in s e t Groups & g . name = name ;

public

InsertGroup (g : GroupRow)

ext wr Groups

post Groups = Groups˜ union {g } ;

public

UpdateGroup (key : Str ing , data : GroupRow)

ext wr Groups

post l et row = i o t a g in s e t Groups & g . name = key

in

row . name = data . name and row . desc = data .

desc ;

public

DeleteGroup (name : S t r ing)

ext wr Groups , GroupMembers , GroupPermissions

post Groups = {g | g in s e t Groups˜ & g . name <>

name} and

−− Cascading d e l e t e on GroupMembers t ab l e .

B.3. DETAILED SPECIFICATION 215

GroupMembers = {gm | gm in s e t GroupMembers˜ &

gm. group <> name} and

−− Cascading d e l e t e on GroupPermissions t ab l e .

GroupPermissions = {gp | gp in s e t

GroupPermissions & gp . group name <> name} ;

public

SelectGroupMembersByUser (user : S t r ing) r : s e t o f

GroupMemberRow

ext rd GroupMembers

post r = {gm | gm in s e t GroupMembers & gm. user =

user } ;

public

SelectGroupMembersByGroup (group : S t r ing) r : s e t o f

GroupMemberRow

ext rd GroupMembers

post r = {gm | gm in s e t GroupMembers & gm. group =

group } ;

public

DeleteGroupMember (group : Str ing , user : S t r ing) r :

bool

B.3. DETAILED SPECIFICATION 216

ext wr GroupMembers

post (GroupMembers = {gm | gm in s e t GroupMembers˜

& gm. group <> group and gm. user <> user }) or

not r ;

public

InsertGroupMember (gm: GroupMemberRow) r : bool

ext wr GroupMembers

post (GroupMembers = GroupMembers˜ union {gm}) or

not r ;

public

SelectUserPermiss ionByUser (user : S t r ing) r : s e t o f

UserPermissionRow

ext rd UserPermiss ions

post r = {up | up in s e t UserPermiss ions & up .

username = user } ;

public

SelectUserPermissionByDocument (id : nat) r : s e t o f

UserPermissionRow

ext rd UserPermiss ions

B.3. DETAILED SPECIFICATION 217

post r = {up | up in s e t UserPermiss ions & up .

document id = id } ;

public

In s e r tUse rPermi s s i on (up : UserPermissionRow)

ext wr UserPermiss ions

post UserPermiss ions = UserPermiss ions ˜ union {up } ;

public

DeleteUserPermiss ion (docid : nat , use r : S t r ing)

ext wr UserPermiss ions

post UserPermiss ions = {up | up in s e t

UserPermiss ions ˜ & up . document id = docid and up

. username = user } ;

public

SelectGroupPermiss ionByUser (group : S t r ing) r : s e t

o f GroupPermissionRow

ext rd GroupPermissions

post r = {gp | gp in s e t GroupPermissions & gp .

group name = group } ;

public

B.3. DETAILED SPECIFICATION 218

SelectGroupPermissionByDocument (id : nat) r : s e t o f

GroupPermissionRow

ext rd GroupPermissions

post r = {gp | gp in s e t GroupPermissions & gp .

document id = id } ;

public

InsertGroupPermiss ion (gp : GroupPermissionRow)

ext wr GroupPermissions

post GroupPermissions = GroupPermissions ˜ union {gp

} ;

public

DeleteGroupPermiss ion (docid : nat , group : S t r ing)

ext wr GroupPermissions

post GroupPermissions = {gp | gp in s e t

GroupPermissions ˜ & gp . document id = docid and

gp . group name = group } ;

end DB

Listing B.18: perms.vdmpp

class ACL i s s u b c l a s s o f PHP

B.3. DETAILED SPECIFICATION 219

va lue s

DEFAULT ACCESS: Acce s sContro lL i s t = {|−>};

types

public Permiss ion = <read> | <ed i t> | <create> | <

de l e t e >;

public AccessObject = Group | User ;

public Permi s s i onL i s t = map Permiss ion to bool ;

public Acces sCont ro lL i s t = map AccessObject to

Permi s s i onL i s t ;

i n s t ance v a r i a b l e s

private db : DB:= new DB() ;

functions

public

ToPermission (s : S t r ing) r e t : [Permiss ion]

post r e t = ca s e s s : ” read ” −> <read >,

” e d i t ” −> <ed i t >,

” c r e a t e ” −> <create >,

” d e l e t e ” −> <de l e t e >,

B.3. DETAILED SPECIFICATION 220

othe r s −> n i l

end ;

operations

public

HasPermission (u : [User] , d : [Document] , p :

Permiss ion) r : bool

ext rd db

post r = i f u = n i l or d = n i l then

f a l s e

else (

(exists row in s e t db . UserPermiss ions &

row . username = u . username and row . document id =

d . id and row . permis s ion = p and row . granted

)

or

(exists row in s e t db . GroupPermissions &

Group ‘ GetByName(row . group name) in s e t u .

GetGroups () and row . document id = d . id and

row . permis s ion = p and row . granted)

) ;

B.3. DETAILED SPECIFICATION 221

public

SetPermiss ion (u : User , d : Document , p : Permiss ion ,

granted : bool)

ext wr db

post exists row in s e t db . UserPermiss ions &

row = mk DB‘ UserPermissionRow (d . id , u . username

, p , granted) ;

public

SetPermiss ion (g : Group , d : Document , p : Permiss ion ,

granted : bool)

ext wr db

post exists row in s e t db . GroupPermissions &

row = mk DB‘ GroupPermissionRow (d . id , g . name , p

, granted) ;

public

SetDe fau l tPermi s s i ons (d : Document) == (

dcl admins : Group:= new Group (i o t a r in s e t db .

Groups & r . name = ” Adminis t rators ”) ;

SetPermiss ion (d . owner , d , <read >, t rue) ;

SetPermiss ion (d . owner , d , <ed i t >, t rue) ;

SetPermiss ion (d . owner , d , <de l e t e >, t rue) ;

B.3. DETAILED SPECIFICATION 222

SetPermiss ion (admins , d , <read >, t rue) ;

SetPermiss ion (admins , d , <ed i t >, t rue) ;

SetPermiss ion (admins , d , <de l e t e >, t rue) ;

) ;

public

GetUserPermiss ions : Document ==> s e t o f DB‘

UserPermissionRow

GetUserPermiss ions (doc) == (

return db . SelectUserPermissionByDocument (doc . id) ;

) ;

public

GetGroupPermissions : Document ==> s e t o f DB‘

GroupPermissionRow

GetGroupPermissions (doc) == (

return db . SelectGroupPermissionByDocument (doc . id)

;

) ;

end ACL

B.3. DETAILED SPECIFICATION 223

Listing B.19: php.vdmpp

−− Top−l e v e l class to r ep r e s e n t nat ive PHP

f u n c t i o n a l i t y .

−− This i n c l u d e s standard data types , functions , and

supe rg l oba l s , e t c .

−− This s e r v e s to r e p r e s en t the runtime environment o f

the system .

class PHP

types

−− Standard s t r i n g d e f i n i t i o n

public St r ing = seq o f char ;

−− The UNIX timestamp i s the standard PHP date / time

value

public Timestamp = i n t ;

−− Here Object i s a gene ra l purpose base type .

public Object = BaseObject | Array | St r ing | i n t |

r e a l | bool | token ;

−− Sca la r p r i m i t i v e s

public Sca la r = St r ing | i n t | r e a l | bool | token ;

−− PHP a l l ows ar rays to be indexed by s t r i n g or

i n t e g e r

B.3. DETAILED SPECIFICATION 224

public ArrayIndex = i n t | St r ing ;

public Array = map ArrayIndex to Object ;

public ResponseCode = <ok> | <r e d i r e c t >;

public Response : :

header : ResponseCode

body : S t r ing ;

i n s t ance v a r i a b l e s

−− Server s u p e r g l o b a l s

public s t a t i c POST: Array := {|−>};

public s t a t i c GET: Array := {|−>};

public s t a t i c COOKIE: Array := {|−>};

public s t a t i c SESSION : Array := {|−>};

public s t a t i c SERVER: Array := {|−>};

public s t a t i c ENV: Array := {|−>};

−− Cl i en t s i d e cook ie s , used f o r s e t t i n g

public s t a t i c C l i entCook ie s : s e t o f Cookie := {} ;

functions

B.3. DETAILED SPECIFICATION 225

public

toArray : s e t o f BaseObject −> Array

toArray (s) == i s not yet s p e c i f i e d ;

public

toObj : s e t o f BaseObject −> BaseObject

toObj (s) == i s not yet s p e c i f i e d ;

−− Determine class name o f a p a r t i c u l a r ob j e c t .

−− This maps to PHP’ s g e t c l a s s () f unc t i on

public

GetClassName : BaseObject −> St r ing

GetClassName (obj) == i s not yet s p e c i f i e d ;

−− Create an in s t ance o f a class based on the class

name .

−− This i s equ iva l en t to ’new $classname () ’ in PHP

public

ObjectFromString (classname : S t r ing) r e t : BaseObject

post GetClassName (r e t) = classname ;

−− Determines i f a class with a p a r t i c u l a r name i s

de f ined .

B.3. DETAILED SPECIFICATION 226

−− Maps to PHP c l a s s e x i s t s () f unc t i on .

public

Cla s sEx i s t s : S t r ing −> bool

C l a s sEx i s t s (c lassname) == i s not yet s p e c i f i e d ;

−− Function f o r PHP’ s i m p l i c i t c a s t i n g o f s t r i n g s

to boo leans .

public

ToBool (s : S t r ing) r e t : bool

post r e t = not s in s e t {”” , ”0”} ;

public

MethodExists : BaseObject ∗ St r ing −> bool

MethodExists (obj , methodname) == i s not yet

s p e c i f i e d ;

−− Takes an ob j e c t and a s t r i n g and c a l l s the

method

−− on the ob j e c t with that name .

−− Equivalent to ’ $obj−>$methodname () ’ in PHP.

public

CallMethod : BaseObject ∗ St r ing −> Object

CallMethod (obj , methodname) == i s not yet s p e c i f i e d

B.3. DETAILED SPECIFICATION 227

pre MethodExists (obj , methodname) ;

operations

−− I n t e r p r e t e r i n i t i a l i z a t i o n

public

PHP()

ext wr SERVER

post SERVER <> {|−>} ;

public s t a t i c

time () r : Timestamp

post r > 0 ;

public

I n i t : () ==> Response

I n i t () == (

dcl f c : FrontCont ro l l e r ;

f c := new FrontCont ro l l e r () ;

r e turn f c . Dispatch (SERVER(”REQUEST URI”)) ;

) ;

B.3. DETAILED SPECIFICATION 228

end PHP

class BaseObject

−− Empty class − used f o r i n h e r i t a n c e purposes .

end BaseObject

Listing B.20: view.vdmpp

class View i s s u b c l a s s o f PHP

in s tance v a r i a b l e s

body : S t r ing := ”” ;

messages : S t r ing := ”” ;

operations

−− Takes a template name and re tu rn s i t s content .

private

GetTemplate (name : S t r ing) t ex t : S t r ing

pre name <> ””

post t ext <> ”” ;

B.3. DETAILED SPECIFICATION 229

−− Load a view template and append i t to the

re sponse body

public

Load : S t r ing ==> ()

Load (viewname) == (

body:= body ˆ messages ˆ GetTemplate (viewname)

) ;

public

Load : S t r ing ∗ PHP‘ Object ==> ()

Load (viewname , data) == i s not yet s p e c i f i e d ;

public

SetMessage : S t r ing ==> ()

SetMessage (msg) == (

messages := messages ˆ msg ;

) ;

−− Return a response f o r the loaded views .

public

Render : () ==> Response

Render () == (

return mk Response(<ok>, body) ;

B.3. DETAILED SPECIFICATION 230

) ;

end View

C System Code

C.1 Controller Classes

Listing C.1: controllers/DocumentController.php

<?php

c l a s s DocumentControl ler extends Act i onCont ro l l e r {

pub l i c func t i on c o n s t r u c t ($viewPath) {

parent : : c o n s t r u c t ($viewPath) ;

}

pub l i c func t i on g e t l i s t () {

$ac l = new ACL() ;

$docs = Document : : GetAll () ;

$a l l owed docs = array () ;

foreach ($docs as $doc) {

231

C.1. CONTROLLER CLASSES 232

i f ($ac l−>HasPermission ($th i s−>cu r r en t u s e r , $doc

, ACL : :READ)) {

$a l l owed docs [] = $doc ;

}

}

$th i s−>view−>load (’ document l i s t ’ , array (’

a l l owed docs ’=>$a l l owed docs)) ;

$ th i s−>view−>render () ;

}

pub l i c func t i on view ($ id) {

$doc = Document : : GetById ($ id) ;

$ac l = new ACL() ;

i f ($p = $acl−>HasPermission ($th i s−>cu r r en t u s e r ,

$doc , ACL : :READ)) {

$th i s−>view−>load (’ document view ’ , array (’ doc ’=>

$doc)) ;

$ th i s−>view−>render () ;

} else {

$th i s−>r e d i r e c t (’ / e r r o r / denied ’) ;

}

}

C.1. CONTROLLER CLASSES 233

pub l i c func t i on e d i t ($ id) {

$doc = Document : : GetById ($ id) ;

$ac l = new ACL() ;

i f (! $ac l−>HasPermission ($th i s−>cu r r en t u s e r , $doc

, ACL : :READ)) {

$th i s−>r e d i r e c t (’ / e r r o r / denied ’) ;

}

$ r e q u i r e d f i e l d s = array (’ t i t l e ’ , ’ body ’) ;

i f ($ th i s−>arrayContains ($ r e q u i r e d f i e l d s , $ POST))

{

$doc−>t i t l e = $ POST [’ t i t l e ’] ;

$doc−>content = $ POST [’ body ’] ;

$doc−>Update () ;

$ th i s−>r e d i r e c t (’ /document/view/ ’ . $doc−>id) ;

} else {

$data = array (’ doc ’=>$doc , ’ a c t i on ’=> ’ e d i t ’) ;

$ th i s−>view−>load (’ document edit ’ , $data) ;

$ th i s−>view−>render () ;

}

}

C.1. CONTROLLER CLASSES 234

pub l i c func t i on delete ($ id) {

$doc = Document : : GetById ($ id) ;

$ac l = new ACL() ;

i f (! i s set ($ POST [’ conf i rm ’])) {

$th i s−>view−>load (’ document delete ’ , array (’ doc ’

=> $doc , ’ t i t l e ’=> ’ De lete document ’)) ;

$ th i s−>view−>render () ;

} e l s e i f ($ac l−>HasPermission ($th i s−>cu r r en t u s e r ,

$doc , ACL : :DELETE)) {

$doc−>Delete () ;

$ th i s−>r e d i r e c t (’ /document/ l i s t / ’) ;

} else {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

}

pub l i c func t i on c r e a t e () {

$doc = new Document () ;

$ac l = new ACL() ;

// Do we need a permiss ion check here ?

$ r e q u i r e d f i e l d s = array (’ t i t l e ’ , ’ body ’) ;

C.1. CONTROLLER CLASSES 235

i f ($ th i s−>arrayContains ($ r e q u i r e d f i e l d s , $ POST))

{

$doc−>t i t l e = $ POST [’ t i t l e ’] ;

$doc−>content = $ POST [’ body ’] ;

$doc−>owner = $th i s−>c u r r e n t u s e r ;

$doc−>i n s e r t () ;

$ac l−>SetDe fau l tPermi s s i ons ($doc) ;

$ th i s−>r e d i r e c t (’ /document/view/ ’ . $doc−>id) ;

} else {

$data = array (’ doc ’=>$doc , ’ a c t i on ’=> ’ c r e a t e ’) ;

$ th i s−>view−>load (’ document edit ’ , $data) ;

$ th i s−>view−>render () ;

}

}

pub l i c func t i on changeOwner ($ id) {

$doc = Document : : GetById ($ id) ;

i f (! $doc) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

C.1. CONTROLLER CLASSES 236

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

i f ($ th i s−>arrayContains (array (’ username ’) , $ POST)

) {

$usr = User : : GetByName($ POST [’ username ’]) ;

i f (! $usr) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

} else {

$doc−>owner = $usr ;

$ r e t = $doc−>Update () ;

i f ($ r e t) $th i s−>r e d i r e c t (’ /document/view/ ’ . $ id

) ;

else $th i s−>view−>setMessage (” Error s e t t i n g

document owner” , ” e r r o r ”) ;

}

} else {

$use r s = User : : GetAll () ;

$data = array (

’ u s e r s ’=> $users ,

’ doc ’=> $doc ,

’ t i t l e ’=> ’ Change Document Owner ’

) ;

C.1. CONTROLLER CLASSES 237

$th i s−>view−>load (’ document changeowner ’ , $data) ;

$ th i s−>view−>render () ;

}

}

pub l i c func t i on changePermiss ions ($ id) {

$db = new DB() ;

$doc = Document : : GetById ($ id) ;

i f (! $doc) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

$user perms = $db−>SelectUserPermissionByDocument (

$ id) ;

$group perms = $db−>SelectGroupPermissionByDocument

($ id) ;

$data = array (’ user perms ’=> $th i s−>

groupPermsByField ($user perms , ’ username ’) ,

’ group perms ’=> $th i s−>groupPermsByField (

$group perms , ’ group name ’) ,

’ doc ’=> $doc ,

’ t i t l e ’=> ’ Change document pe rmi s s i ons ’) ;

$ th i s−>view−>load (’ document changepermiss ions ’ ,

$data) ;

C.1. CONTROLLER CLASSES 238

$th i s−>view−>render () ;

}

protec ted func t i on groupPermsByField ($rowset ,

$ f i e ldname) {

$ r e t = array () ;

foreach ($rowset as $row) {

i f (! i s set ($ r e t [$row [$ f i e ldname]])) {

$ r e t [$row [$ f i e ldname]] = array () ;

}

$ r e t [$row [$ f i e ldname]] [$row [’ permis s ion ’]] = $row

[’ granted ’] ;

}

r e turn $ r e t ;

}

pub l i c func t i on setUserPermis s ion ($ id) {

$doc = Document : : GetById ($ id) ;

$ac l = new ACL() ;

i f (! $doc) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

C.1. CONTROLLER CLASSES 239

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r () &&

$th i s−>cu r r en t u s e r−>username != $doc−>owner−>

username) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

i f ($ th i s−>arrayContains (array (’ use r ’ , ’ perm ’ , ’

s t a t u s ’) , $ POST)) {

$usr = User : : GetByName($ POST [’ user ’]) ;

$perm = ACL : : toPerm ($ POST [’ perm ’]) ;

$ s t a tu s = $ POST [’ s t a t u s ’] ;

i f ($usr && $perm) {

$ac l−>SetPermiss ion ($usr , $doc , $perm , $ s ta tu s)

;

$ th i s−>view−>setMessage (” Permiss ions updated” ,

’ s u c c e s s ’) ;

$ th i s−>r e d i r e c t (’ /document/view/ ’ . $ id) ;

} else {

$th i s−>view−>setMessage (’ Error − User or

permis s ion not v a l i d ’ , ’ e r r o r ’) ;

$ th i s−>r e d i r e c t (’ /document/ changePermiss ions / ’ .

$ id) ;

C.1. CONTROLLER CLASSES 240

}

} else {

$th i s−>view−>setMessage (’ Error − Miss ing

parameters ’ , ’ e r r o r ’) ;

$ th i s−>r e d i r e c t (’ /document/ changePermiss ions / ’ .

$ id) ;

}

}

pub l i c func t i on setGroupPermiss ion ($ id) {

$doc = Document : : GetById ($ id) ;

$ac l = new ACL() ;

i f (! $doc) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r () &&

$th i s−>cu r r en t u s e r−>username != $doc−>owner−>

username) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

C.1. CONTROLLER CLASSES 241

i f ($ th i s−>arrayContains (array (’ group ’ , ’ perm ’ , ’

s t a t u s ’) , $ POST)) {

$group = Group : : GetByName(’ user ’) ;

$perm = ACL : : toPerm ($ POST [’ perm ’]) ;

$ s t a tu s = $ POST [’ s t a t u s ’] == ’ granted ’ ;

i f ($group && $perm) {

$ac l−>SetPermiss ion ($group , $doc , $perm ,

$ s ta tu s) ;

$ th i s−>r e d i r e c t (’ /document/view/ ’ . $ id) ;

} else {

$th i s−>view−>load (’ s e t g r o up p e r m i s s i on ’) ;

$ th i s−>view−>render () ;

}

} else {

$th i s−>view−>load (’ s e t g r o up p e r m i s s i on ’) ;

$ th i s−>view−>render () ;

}

}

}

Listing C.2: controllers/ErrorController.php

<?php

c l a s s Er ro rCont ro l l e r extends Act i onCont ro l l e r {

C.1. CONTROLLER CLASSES 242

pub l i c func t i on c o n s t r u c t ($viewPath) {

parent : : c o n s t r u c t ($viewPath) ;

}

pub l i c func t i on denied () {

$th i s−>view−>load (’ e r r o r d e n i e d ’) ;

$ th i s−>view−>render () ;

}

pub l i c func t i on i n v a l i d () {

$th i s−>view−>load (’ e r r o r i n v a l i d ’) ;

$ th i s−>view−>render () ;

}

}

Listing C.3: controllers/GroupController.php

<?php

c l a s s GroupControl ler extends Act i onCont ro l l e r {

pub l i c func t i on c o n s t r u c t ($viewPath) {

parent : : c o n s t r u c t ($viewPath) ;

}

pub l i c func t i on g e t l i s t () {

C.1. CONTROLLER CLASSES 243

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$groups = Group : : GetAll () ;

$ th i s−>view−>load (’ g r o u p l i s t ’ , array (’ groups ’

=> $groups)) ;

$ th i s−>view−>render () ;

}

pub l i c func t i on show ($name) {

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$group = Group : : GetByName($name) ;

$ th i s−>view−>load (’ group show ’ , array (’ group ’=>

$group)) ;

$ th i s−>view−>render () ;

}

pub l i c func t i on c r e a t e () {

$ r e q f i e l d s = array (’ group name ’) ;

C.1. CONTROLLER CLASSES 244

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

} e l s e i f (! $ th i s−>arrayContains ($ r e q f i e l d s , $ POST

)) {

$th i s−>view−>load (” g roup c r ea t e ”) ;

$ th i s−>view−>render () ;

} else {

$grp = new Group () ;

$grp−>name = $ POST [’ group name ’] ;

$grp−>d e s c r i p t i o n = i s set ($ POST [’ d e s c r i p t i o n ’])

? $ POST [’ d e s c r i p t i o n ’] : ’ ’ ;

$grp−>i n s e r t () ;

$ th i s−>r e d i r e c t (’ /group/ g e t l i s t / ’) ;

}

}

pub l i c func t i on addUser ($name) {

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$g = Group : : GetByName($name) ;

i f (! $g) {

C.1. CONTROLLER CLASSES 245

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

$ r e q f i e l d s = array (’ username ’) ;

i f (! $ th i s−>arrayContains ($ r e q f i e l d s , $ POST)

) {

$th i s−>view−>setMessage (” Miss ing username”) ;

} else {

$u = User : : GetByName($ POST [’ username ’]) ;

i f ($u) {

$ r e t = $g−>Add($u) ;

$msg = $re t ? ”Added user ” . $u−>username . ” to ”

. $g−>name : ” Fa i l ed to add user ” ;

$ th i s−>view−>setMessage ($msg , $ r e t ? ” s u c c e s s ”

: ” e r r o r ”) ;

} else {

$th i s−>view−>setMessage (”User ’ ” . $ POST [’

username ’] . ” ’ does not e x i s t ” , ” e r r o r ”) ;

}

}

$th i s−>r e d i r e c t (’ /group/show/ ’ . $g−>name) ;

$ th i s−>view−>render () ;

C.1. CONTROLLER CLASSES 246

}

pub l i c func t i on removeUser ($name) {

i f (! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$g = Group : : GetByName($name) ;

i f (! $g) {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

}

$ r e q f i e l d s = array (’ username ’) ;

i f ($ th i s−>arrayContains ($ r e q f i e l d s , $ POST))

{

$u = User : : GetByName($ POST [’ username ’]) ;

i f ($u) {

$g−>Remove($u) ;

$ th i s−>r e d i r e c t (’ /group/ l i s t / ’) ;

} else {

$th i s−>r e d i r e c t (’ / e r r o r / i n v a l i d / ’) ;

C.1. CONTROLLER CLASSES 247

}

} else {

$th i s−>view−>load (” group remove user ”) ;

$ th i s−>view−>render () ;

}

}

}

Listing C.4: controllers/IndexController.php

<?php

c l a s s IndexCont ro l l e r extends Act i onCont ro l l e r {

pub l i c func t i on c o n s t r u c t ($viewPath) {

parent : : c o n s t r u c t ($viewPath) ;

}

pub l i c func t i on g e t l i s t () {

$th i s−>view−>load (’ index ’) ;

$ th i s−>view−>render () ;

}

}

Listing C.5: controllers/UserController.php

<?php

c l a s s Use rCont ro l l e r extends Act i onCont ro l l e r {

C.1. CONTROLLER CLASSES 248

pub l i c func t i on c o n s t r u c t ($viewPath) {

parent : : c o n s t r u c t ($viewPath) ;

}

pub l i c func t i on c r e a t e () {

$ r e q f i e l d s = array (’ username ’ , ’ password ’ , ’

conf i rm ’) ;

i f (empty($ th i s−>c u r r e n t u s e r) | |

! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

} e l s e i f ($ th i s−>arrayContains ($ r e q f i e l d s , $ POST)

) {

$usr = new User () ;

$usr−>username = $ POST [’ username ’] ;

$usr−>setPassword ($ POST [’ password ’]) ;

i f ($usr−>checkPassword ($ POST [’ conf i rm ’])) {

$usr−>i n s e r t () ;

$data = array (’name ’=>$usr−>username) ;

$ th i s−>view−>setMessage (’ S u c c e s s f u l l y c r ea ted

user ’ . $usr−>username , ’ s u c c e s s ’) ;

} else {

C.1. CONTROLLER CLASSES 249

$th i s−>view−>setMessage (’ Error c r e a t i n g user ’ .

$usr−>username , ’ e r r o r ’) ;

}

$th i s−>view−>load (” u s e r c r e a t e ” , $data) ;

} else {

i f (! empty($ POST)) {

$th i s−>view−>setMessage (’ Error c r e a t i n g user −

miss ing f i e l d s ’ , ’ e r r o r ’) ;

}

$th i s−>view−>load (” u s e r c r e a t e ”) ;

}

$th i s−>view−>render () ;

}

pub l i c func t i on changePassword ($username) {

i f (empty($ th i s−>c u r r e n t u s e r) | |

! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$usr = User : : GetByName($username) ;

i f (! $usr) {

C.1. CONTROLLER CLASSES 250

$th i s−>view−>setMessage (’ S p e c i f i e d user does not

e x i s t ’ , ’ e r r o r ’) ;

$ th i s−>r e d i r e c t (’ / user / l i s t / ’) ;

}

$ k e y s s e t = $th i s−>arrayContains (array (’ password ’ ,

’ conf i rm ’) , $ POST) ;

i f ($ k e y s s e t && $ POST [’ password ’] == $ POST [’

conf i rm ’]) {

$usr−>SetPassword ($ POST [’ password ’]) ;

$usr−>Save () ;

$ th i s−>view−>setMessage (”Password changed” , ”

s u c c e s s ”) ;

$ th i s−>r e d i r e c t (’ / user / l i s t / ’) ;

} e l s e i f ($ k e y s s e t && $ POST [’ password ’] !=

$ POST [’ conf i rm ’]) {

$th i s−>view−>setMessage (”Passwords do not match”)

;

}

$th i s−>view−>load (’ user password ’ , array (’ t i t l e ’=>

’ Change password ’)) ;

$ th i s−>view−>render () ;

C.1. CONTROLLER CLASSES 251

}

pub l i c func t i on l o g i n () {

i f ($ th i s−>c u r r e n t u s e r) {

$th i s−>r e d i r e c t (’ /document/ g e t l i s t / ’) ;

}

i f ($ th i s−>arrayContains (array (’ username ’ , ’

password ’) , $ POST)) {

$ l ogged in = Auth : : l o g i n ($ POST [’ username ’] ,

$ POST [’ password ’]) ;

i f ($ l ogged in) {

$th i s−>c u r r e n t u s e r = $ SESSION [User : : CURR USER

] ;

$ th i s−>r e d i r e c t (’ /document/ g e t l i s t / ’) ;

} else {

$th i s−>view−>setMessage (” I n v a l i d username or

password . ”) ;

}

}

$th i s−>view−>load (” u s e r l o g i n ” , array (’ t i t l e ’=> ’

User l o g i n ’)) ;

$ th i s−>view−>render () ;

C.1. CONTROLLER CLASSES 252

}

pub l i c func t i on logout () {

unset ($ th i s−>c u r r e n t u s e r) ;

unset ($ SESSION [Auth : : CURR USER]) ;

$ th i s−>r e d i r e c t (’ / user / l o g i n / ’) ;

}

pub l i c func t i on g e t l i s t () {

i f (empty($ th i s−>c u r r e n t u s e r) | |

! $ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) {

$th i s−>r e d i r e c t (’ / e r r o r / denied / ’) ;

}

$use r s = User : : GetAll () ;

$ th i s−>view−>load (’ u s e r l i s t ’ , array (’ t i t l e ’=> ’

User l i s t ’ , ’ u s e r s ’=> $use r s)) ;

$ th i s−>view−>render () ;

}

}

C.2. LIBRARY CLASSES 253

C.2 Library Classes

Listing C.6: lib/ACL.php

<?php

c l a s s ACL {

const READ = ’ read ’ ;

const WRITE = ’ e d i t ’ ;

const DELETE = ’ d e l e t e ’ ;

const CREATE = ’ c r e a t e ’ ;

p r i v a t e $db = n u l l ;

pub l i c func t i on c o n s t r u c t () {

$th i s−>db = new DB() ;

}

pub l i c func t i on HasPermission ($user , $document , $perm

) {

i f (! $user | | ! $document) re turn fa l se ;

$user has perm = $th i s−>db−>Se l e c tUse rPermi s s i on (

$user−>username , $document−>id , $perm) ;

i f ($user has perm !== n u l l) {

C.2. LIBRARY CLASSES 254

re turn $user has perm == 1 ;

} else {

$group has perm = $th i s−>db−>

SelectGroupPermiss ion ($user−>username ,

$document−>id , $perm) ;

r e turn $group has perm == 1 ;

}

}

pub l i c func t i on SetPermiss ion ($user , $document , $perm

, $granted) {

$data = array (’ document id ’=> $document−>id ,

’ pe rmis s ion ’=> $perm ,

’ granted ’=> $granted) ;

i f (i s a ($user , ’ User ’)) {

$data [’ username ’] = $user−>username ;

$has perm = $th i s−>db−>Se l e c tUse rPermi s s i on ($user

−>username , $document−>id , $perm) ;

i f ($has perm !== n u l l) {

$th i s−>db−>UpdateUserPermission ($user−>username

, $document−>id , $perm , $granted) ;

} else {

$th i s−>db−>In s e r tUse rPermi s s i on ($data) ;

C.2. LIBRARY CLASSES 255

}

} else {

$data [’ group name ’] = $user−>name ;

$has perm = $th i s−>db−>SelectGroupPermiss ion (

$user−>name , $document−>id , $perm) ;

i f ($has perm !== n u l l) {

$th i s−>db−>UpdateGroupPermission ($user−>name ,

$document−>id , $perm , $granted) ;

} else {

$th i s−>db−>InsertGroupPermiss ion ($data) ;

}

}

}

pub l i c func t i on SetDe fau l tPermi s s i ons ($doc) {

$admins = Group : : GetByName(’ Admin i s t rators ’) ;

$ th i s−>SetPermiss ion ($doc−>owner , $doc , ACL : :READ,

true) ;

$ th i s−>SetPermiss ion ($doc−>owner , $doc , ACL : : WRITE,

true) ;

$ th i s−>SetPermiss ion ($doc−>owner , $doc , ACL : : DELETE

, true) ;

C.2. LIBRARY CLASSES 256

$th i s−>SetPermiss ion ($admins , $doc , ACL : :READ, true

) ;

$ th i s−>SetPermiss ion ($admins , $doc , ACL : : WRITE,

true) ;

$ th i s−>SetPermiss ion ($admins , $doc , ACL : : DELETE,

true) ;

}

pub l i c s t a t i c func t i on toPerm ($va l) {

i f (in array ($val , s e l f : : g e tPe rmi s s i onL i s t ())) {

r e turn $va l ;

} else {

r e turn n u l l ;

}

}

pub l i c s t a t i c func t i on ge tPe rmi s s i onL i s t () {

r e turn array (ACL : :CREATE, ACL : : DELETE, ACL : :READ,

ACL : :WRITE) ;

}

}

C.2. LIBRARY CLASSES 257

Listing C.7: lib/ActionController.php

<?php

c l a s s Act i onCont ro l l e r {

protec ted $ c u r r e n t u s e r ;

p ro tec ted $db ;

pro tec ted $view ;

pub l i c $baseUrl = ’ ’ ;

pub l i c $rootUr l = ’ / ’ ;

pub l i c $useQueryStr ing = fa l se ;

p ro tec ted func t i on c o n s t r u c t ($viewPath) {

$th i s−>db = new DB() ;

$ th i s−>view = new View ($viewPath , $ t h i s) ;

i f (i s set ($ SESSION [Auth : : CURR USER])) {

$th i s−>c u r r e n t u s e r = User : : GetByName($ SESSION [

Auth : : CURR USER]) ;

} else {

$th i s−>c u r r e n t u s e r = n u l l ;

}

$th i s−>view−>c u r r e n t u s e r = $th i s−>c u r r e n t u s e r ;

}

C.2. LIBRARY CLASSES 258

/∗∗

∗ U t i l i t y method f o r c a l c u l a t i n g array s u b s e t

based on keys .

∗

∗ @param array $keys Array o f key v a l u e s f o r

which to check

∗ @param array $array The array in which to check

f o r them

∗ @return b o o l True i f the array conta ins a l l the

r e q u e s t e d keys ,

∗ f a l s e o t h e r w i s e .

∗/

protec ted func t i on arrayContains (array $keys , array

$array) {

foreach ($keys as $key) {

i f (! i s set ($array [$key])) r e turn fa l se ;

}

r e turn true ;

}

pub l i c func t i on route ($c t l , $act , $data=n u l l) {

i f ($ th i s−>useQueryStr ing) {

C.2. LIBRARY CLASSES 259

$ r e t = $th i s−>baseUrl . ”? c=$ c t l&a=$act ” ;

i f ($data !== n u l l) $ r e t .= ”&d=$data ” ;

} else {

$route = array ($c t l , $act) ;

i f ($data !== n u l l) $route [] = $data ;

$ r e t = $th i s−>baseUrl . ’ / ’ . implode (’ / ’ ,

$route) ;

}

r e turn $ r e t ;

}

pub l i c func t i on l ink ($ r e s) {

r e turn $th i s−>rootUr l . $ r e s ;

}

pub l i c func t i on r e d i r e c t ($u r l) {

i f ($ th i s−>baseUrl) {

$ur l = $th i s−>baseUrl . $u r l ;

}

header (’ Locat ion : ’ . $u r l) ;

exit ;

}

}

C.2. LIBRARY CLASSES 260

?>

Listing C.8: lib/ActiveRecord.php

<?php

abs t r a c t c l a s s ActiveRecord {

pub l i c $ id ;

pub l i c func t i on Update () {

}

pub l i c func t i on I n s e r t () {

}

pub l i c func t i on Save () {

i f ($ th i s−>id) {

$th i s−>update () ;

} else {

$th i s−>i n s e r t () ;

}

}

C.2. LIBRARY CLASSES 261

}

Listing C.9: lib/Auth.php

<?php

c l a s s Auth {

const CURR USER = ’ c u r r u s e r ’ ;

pub l i c s t a t i c func t i on l o g i n ($username , $password)

{

$ l ogged in = fa l se ;

$user = User : : GetByName($username) ;

i f ($user && $user−>checkPassword ($password)) {

$ SESSION [User : : CURR USER] = $user−>

username ;

re turn true ;

} else {

r e turn fa l se ;

}

}

pub l i c s t a t i c func t i on logout () {

unset ($ SESSION [User : : CURR USER]) ;

C.2. LIBRARY CLASSES 262

}

}

Listing C.10: lib/DB.php

<?php

c l a s s DB {

protec ted $dbconn ;

pub l i c func t i on c o n s t r u c t () {

$th i s−>dbconn = new PDO($GLOBALS[’db ’] [’ dsn ’] ,

$GLOBALS[’db ’] [’ username ’] ,

$GLOBALS[’db ’] [’ password ’]) ;

$ th i s−>dbconn−>s e t A t t r i b u t e (PDO: :ATTR ERRMODE, PDO

: :ERRMODE EXCEPTION) ;

}

/∗∗

∗ Convenience f u n c t i o n to e x e c u t e a s e l e c t query and

re turn the r e s u l t s e t .

∗ @param s t r i n g $ s q l The SQL query to e x e c u t e .

∗ @param array $data The parameters to e x e c u t e the

prepared query .

C.2. LIBRARY CLASSES 263

∗/

protec ted func t i on runSe l e c t ($sq l , $data=array ()) {

// t r y {

$query = $th i s−>dbconn−>prepare ($ s q l) ;

$query−>execute ($data) ;

r e turn $query−>f e t c h A l l () ;

//} catch (PDOException $e) {

// e r r o r l o g (’ Error on l i n e ’ . LINE . ’ o f ’ .

FILE . ’ : ’ .

// $e−>getMessage ()) ;

// re turn n u l l ;

//}

}

/∗∗

∗ Convenience f u n c t i o n to f e t c h a s i n g l e row .

∗ @param s t r i n g $ s q l The SQL query to e x e c u t e .

∗ @param array $data The data to e x e c u t e the

prepared query .

∗/

protec ted func t i on r u n S i n g l e S e l e c t ($sq l , $data) {

// t r y {

$query = $th i s−>dbconn−>prepare ($ s q l) ;

C.2. LIBRARY CLASSES 264

$query−>execute ($data) ;

$ r e t = $query−>f e t c h () ;

r e turn $ r e t ;

//} catch (PDOException $e) {

// e r r o r l o g (’ Error on l i n e ’ . LINE . ’ o f ’ .

FILE . ’ : ’ .

// $e−>getMessage ()) ;

// re turn n u l l ;

//}

}

/∗∗

∗ Convenience f u n c t i o n to f e t c h a s c a l a r v a l u e .

∗ @param s t r i n g $ s q l The SQL query to e x e c u t e .

∗ @param mixed $data The data in the s i n g l e r e s u l t

column , or n u l l f o r an empty r e s u l t s e t .

∗/

protec ted func t i on r u n S c a l a r S e l e c t ($sq l , $data) {

// t r y {

$query = $th i s−>dbconn−>prepare ($ s q l) ;

$query−>execute ($data) ;

$ r e t = $query−>fetchColumn () ;

r e turn $ r e t === fa l se ? n u l l : $ r e t ;

C.2. LIBRARY CLASSES 265

//} catch (PDOException $e) {

// e r r o r l o g (’ Error on l i n e ’ . LINE . ’ o f ’ .

FILE . ’ : ’ .

// $e−>getMessage ()) ;

// re turn n u l l ;

//}

}

protec ted func t i on runQuery ($sq l , $data) {

// t r y {

$query = $th i s−>dbconn−>prepare ($ s q l) ;

// var dump ($query) ; e x i t ;

r e turn $query−>execute ($data) ;

//} catch (PDOException $e) {

// e r r o r l o g (’ Error on l i n e ’ . LINE . ’ o f ’ .

FILE . ’ : ’ .

// $e−>getMessage ()) ;

// re turn f a l s e ;

//}

}

pub l i c func t i on Se l e c tUse r ($username) {

$ s q l = ’SELECT ∗ FROM Users WHERE username = ? ’ ;

C.2. LIBRARY CLASSES 266

re turn $th i s−>r u n S i n g l e S e l e c t ($sq l , array ($username

)) ;

}

pub l i c func t i on UpdateUser ($key , $data) {

$ s q l = ”UPDATE Users SET username = ? , password = ?

WHERE username = ?” ;

$params = array ($data [’ username ’] , $data [’ password ’

] , $key) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on In s e r tUse r ($data) {

$ s q l = ”INSERT INTO Users (username , password)

VALUES (? , ?) ” ;

$params = array ($data [’ username ’] , $data [’ password ’

]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on DeleteUser ($key) {

$ s q l = ”DELETE FROM Users WHERE username = ?” ;

$params = array ($key) ;

C.2. LIBRARY CLASSES 267

re turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on SelectAl lDocuments () {

$ s q l = ”SELECT ∗ FROM Documents” ;

r e turn $th i s−>runSe l e c t ($ s q l) ;

}

pub l i c func t i on SelectDocument ($ id) {

$ s q l = ’SELECT ∗ FROM Documents WHERE id = ? ’ ;

$params = array ($ id) ;

r e turn $th i s−>r u n S i n g l e S e l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectDocumentByOwner ($owner) {

$ s q l = ’SELECT ∗ FROM Documents WHERE owner = ? ’ ;

$params = array ($ id) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectDocumentsByGroup ($group) {

$ s q l = ’SELECT ∗ FROM Documents WHERE owner IN ’ .

C.2. LIBRARY CLASSES 268

’ (SELECT user name FROM GroupMembers WHERE

group name = ?) ’ ;

$params = array ($group) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectReadableDocuments ($user) {

$ s q l = ’SELECT ∗ FROM Documents AS d WHERE EXISTS ’

.

’ (SELECT ∗ FROM UserPermiss ions AS up WHERE

’ .

’ up . document id = d . id AND up . username = ?

AND ’ .

” up . pemiss ion = ’ read ’ and up . granted = 1) OR

” .

’ (SELECT ∗ FROM GroupPermissions AS gp WHERE ’

.

’ gp . group name IN (SELECT group name FROM

GroupMembers WHERE user = ?) AND ’ .

’ gp . document id = d . id AND gp . group name = ?

AND ’ .

” gp . pemiss ion = ’ read ’ and gp . granted = 1) ” ;

$params = array ($user , $user , $user) ;

C.2. LIBRARY CLASSES 269

re turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on UpdateDocument ($key , $data) {

$ s q l = ’UPDATE Documents SET id = ? , t i t l e = ? ,

content = ? , owner = ? WHERE id = ? ’ ;

$params = array ($data [’ id ’] , $data [’ t i t l e ’] , $data [

’ content ’] , $data [’ owner ’] , $data [’ id ’]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on InsertDocument ($data) {

$ s q l = ’INSERT INTO Documents (t i t l e , content ,

owner) VALUES (? , ? , ?) ’ ;

$params = array ($data [’ t i t l e ’] , $data [’ content ’] ,

$data [’ owner ’]) ;

Need to add note to paper on hand l ing auto−i d .

$ r e t = $th i s−>runQuery ($sq l , $params) ;

i f ($ r e t) re turn $th i s−>dbconn−>l a s t I n s e r t I d () ;

else r e turn fa l se ;

}

pub l i c func t i on DeleteDocument ($key) {

C.2. LIBRARY CLASSES 270

$ s q l = ’DELETE FROM Documents WHERE id = ? ’ ;

$params = array ($key) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on Se lectAl lGroups () {

$ s q l = ’SELECT ∗ FROM Groups ’ ;

r e turn $th i s−>runSe l e c t ($ s q l) ;

}

pub l i c func t i on S e l e c t A l l U s e r s () {

$ s q l = ’SELECT ∗ FROM Users ’ ;

r e turn $th i s−>runSe l e c t ($ s q l) ;

}

pub l i c func t i on SelectGroup ($name) {

$ s q l = ’SELECT ∗ FROM Groups WHERE name = ? ’ ;

$params = array ($name) ;

r e turn $th i s−>r u n S i n g l e S e l e c t ($sq l , $params) ;

}

pub l i c func t i on InsertGroup ($data) {

C.2. LIBRARY CLASSES 271

$ s q l = ’INSERT INTO Groups (name , d e s c r i p t i o n)

VALUES (? , ?) ’ ;

$params = array ($data [’name ’] , $data [’ d e s c r i p t i o n ’

]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on UpdateGroup ($key , $data) {

$ s q l = ’UPDATE Group SET name = ? , d e s c r i p t i o n = ?

WHERE name = ? ’ ;

$params = array ($data [’name ’] , $data [’ d e s c r i p t i o n ’

]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on DeleteGroup ($key) {

$ s q l = ’DELETE FROM Groups WHERE name = ? ’ ;

$params = array ($key) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on SelectAdminMembershipByUser ($user) {

$ s q l = ”SELECT CASE WHEN EXISTS ” .

C.2. LIBRARY CLASSES 272

” (SELECT ∗ FROM GroupMembers WHERE user name

= ? AND group name = ’ Admini s t rators ’)

THEN 1 ” .

”ELSE 0 END” ;

$params = array ($user) ;

r e turn $th i s−>r u n S c a l a r S e l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectGroupMembership ($user , $group)

{

$ s q l = ”SElECT CASE WHEN ” .

”EXISTS (SELECT ∗ FROM GroupMembers WHERE ” .

” user name = ? AND group name = ?) THEN 1” .

”ELSE 0 END” ;

$params = array ($user , $group) ;

r e turn $th i s−>r u n S c a l a r S e l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectGroupMembersByUser ($user) {

$ s q l = ’SELECT ∗

FROM GroupMembers AS gm JOIN Groups AS g ON

gm. group name = g . group name

WHERE user name = ? ’ ;

C.2. LIBRARY CLASSES 273

$params = array ($user) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectGroupMembersByGroup ($group) {

$ s q l = ’SELECT ∗

FROM GroupMembers AS gm JOIN Users AS u ON

gm. user name = u . username

WHERE group name = ? ’ ;

$params = array ($group) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on InsertGroupMember ($data) {

$ s q l = ’INSERT INTO GroupMembers (group name ,

user name) VALUES (? , ?) ’ ;

$params = array ($data [’ group name ’] , $data [’

user name ’]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on DeleteGroupMember ($group , $user) {

C.2. LIBRARY CLASSES 274

$ s q l = ’DELETE FROM Group WHERE group name = ? AND

user name = ? ’ ;

$params = array ($data [’ group name ’] , $data [’

user name ’]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on Se lectUserPermiss ionByUser ($user) {

$ s q l = ’SELECT ∗ FROM UserPermiss ions WHERE

username = ? ’ ;

$params = array ($user) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectUserPermissionByDocument ($ id) {

$ s q l = ’SELECT ∗ FROM UserPermiss ions WHERE

document id = ? ’ ;

$params = array ($ id) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on Se l e c tUse rPermi s s i on ($user , $docid ,

$perm) {

C.2. LIBRARY CLASSES 275

$ s q l = ’SELECT granted FROM UserPermiss ions WHERE ’

.

’ username = ? AND document id = ? AND

permis s ion = ? ’ ;

$params = array ($user , $docid , $perm) ;

r e turn $th i s−>r u n S c a l a r S e l e c t ($sq l , $params) ;

}

pub l i c func t i on Inse r tUse rPermi s s i on ($data) {

$ s q l = ’INSERT INTO UserPermiss ions ’ .

’ (document id , username , permiss ion , granted

) VALUES (? , ? , ? , ?) ’ ;

$params = array ($data [’ document id ’] ,

$data [’ username ’] ,

$data [’ pe rmis s ion ’] ,

$data [’ granted ’]) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on DeleteUserPermiss ion ($docid , $user) {

$ s q l = ’DELETE FROM UserPermiss ions ’ .

’WHERE document id = ? AND username = ? ’ ;

$params = array ($docid , $user) ;

C.2. LIBRARY CLASSES 276

re turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on UpdateUserPermission ($user , $docid ,

$perm , $granted) {

$ s q l = ’UPDATE UserPermiss ions SET granted = ?

WHERE ’ .

’ username = ? AND document id = ? AND

permis s ion = ? ’ ;

$params = array ($granted , $user , $docid , $perm) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on SelectGroupPermiss ionByUser ($group) {

$ s q l = ’SELECT ∗ FROM GroupPermissions WHERE

group name = ? ’ ;

$params = array ($group) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on SelectGroupPermissionByDocument ($ id)

{

C.2. LIBRARY CLASSES 277

$ s q l = ’SELECT ∗ FROM GroupPermissions WHERE

document id = ? ’ ;

$params = array ($ id) ;

r e turn $th i s−>runSe l e c t ($sq l , $params) ;

}

pub l i c func t i on Se lectGroupPermiss ion ($group , $docid ,

$perm) {

$ s q l = ’SELECT ∗ FROM GroupPermissions WHERE ’ .

’ group name = ? AND document id = ? AND

permis s ion = ? ’ ;

$params = array ($group , $docid , $perm) ;

r e turn $th i s−>r u n S c a l a r S e l e c t ($sq l , $params) ;

}

pub l i c func t i on InsertGroupPermiss ion ($data) {

$ s q l = ’INSERT INTO GroupPermissions ’ .

’ (document id , group name , permiss ion ,

granted) VALUES (? , ? , ? , ?) ’ ;

$params = array ($data [’ document id ’] ,

$data [’ group name ’] ,

$data [’ pe rmis s ion ’] ,

$data [’ granted ’]) ;

C.2. LIBRARY CLASSES 278

re turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on DeleteGroupPermiss ion ($docid , $group)

{

$ s q l = ’DELETE FROM GroupPermissions ’ .

’WHERE document id = ? AND username = ? ’ ;

$params = array ($docid , $group) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

pub l i c func t i on UpdateGroupPermission ($group , $docid ,

$perm , $granted) {

$ s q l = ’UPDATE GroupPermissions SET granted = ?

WHERE ’ .

’ group name = ? AND document id = ? AND

permis s ion = ? ’ ;

$params = array ($granted , $group , $docid , $perm) ;

r e turn $th i s−>runQuery ($sq l , $params) ;

}

}

C.2. LIBRARY CLASSES 279

Listing C.11: lib/FrontController.php

<?php

c l a s s FrontCont ro l l e r {

pub l i c $useQueryStr ing = fa l se ;

pub l i c $baseUrl = ’ ’ ;

pub l i c $rootUr l = ’ / ’ ;

pub l i c $viewPath = ’ ’ ;

p r i v a t e func t i on g e t C o n t r o l l e r S t a t i c ($ctlname) {

switch ($ctlname) {

case ’ u se r ’ :

r e turn new UserCont ro l l e r ($ th i s−>viewPath) ;

case ’ document ’ :

r e turn new DoucmentControl ler ($ th i s−>viewPath) ;

case ’ group ’ :

r e turn new GroupControl ler ($ th i s−>viewPath) ;

case ’ index ’ :

case ’ ’ :

r e turn new IndexCont ro l l e r ($ th i s−>viewPath) ;

default :

r e turn new Er ro rCont ro l l e r ($ th i s−>viewPath) ;

}

C.2. LIBRARY CLASSES 280

}

p r i v a t e func t i on getControl lerDynamic ($ctlname) {

$cont ro l l e r name = ucwords($ctlname ? $ctlname : ’

index ’) . ” C o n t r o l l e r ” ;

i f (c lass exists ($contro l l e r name , true)) {

r e turn new $cont ro l l e r name ($th i s−>viewPath) ;

} else {

r e turn new Er ro rConto r l l e r () ;

}

}

p r i v a t e func t i on g e t C o n t r o l l e r ($ctlname) {

$ r e t = $th i s−>getControl lerDynamic ($ctlname) ;

$ th i s−>c o n f i g u r e C o n t r o l l e r ($ r e t) ;

r e turn $ r e t ;

}

p r i v a t e func t i on Cal lAct ion ($c t l , $actname , $data) {

i f ($actname == ’ l i s t ’ && method exists ($c t l , ’

g e t l i s t ’)) {

$actname = ’ g e t l i s t ’ ;

}

C.2. LIBRARY CLASSES 281

call user func array (array ($c t l , $actname) , $data) ;

}

p r i v a t e func t i on s p l i t U r l ($u r l) {

i f (strpos ($ur l , $ th i s−>baseUrl) === 0) {

$ur l = substr ($ur l , strlen ($ th i s−>baseUrl)) ;

}

$ur l = trim ($ur l , ’ / ’) ;

i f ($ th i s−>useQueryStr ing) {

r e turn array ($ GET [’ c ’] , $ GET [’ a ’] , $ GET [’d ’]) ;

} else {

$data = trim ($ur l , ’ / ’) ;

r e turn explode (’ / ’ , $u r l) ;

}

}

protec ted func t i on c o n f i g u r e C o n t r o l l e r ($ c t l) {

$c t l−>baseUrl = $th i s−>baseUrl ;

$ c t l−>rootUr l = $th i s−>rootUr l ;

$ c t l−>useQueryStr ing = $th i s−>useQueryStr ing ;

}

C.2. LIBRARY CLASSES 282

pub l i c func t i on d i spatch ($ur l) {

$ur ldata = $th i s−>s p l i t U r l ($u r l) ;

$ c t l = $th i s−>g e t C o n t r o l l e r ($ur ldata [0]) ;

i f (! i s a ($c t l , ’ Use rCont ro l l e r ’) &&

! i s set ($ SESSION [Auth : : CURR USER])) {

$c t l−>r e d i r e c t (’ / user / l o g i n / ’) ;

} else {

$th i s−>Cal lAct ion ($c t l , $ur ldata [1] , array sl ice (

$ur ldata , 2)) ;

}

}

}

Listing C.12: lib/View.php

<?php

c l a s s View {

pub l i c $viewPath = ”” ;

pub l i c $ c u r r e n t u s e r = n u l l ;

pub l i c $ c o n t r o l l e r = n u l l ;

p r i v a t e $body = ’ ’ ;

p r i v a t e $ f i l ename = ’ ’ ;

C.2. LIBRARY CLASSES 283

p r i v a t e $data = array () ;

pub l i c func t i on c o n s t r u c t ($path=’ ’ , $ c t l=n u l l) {

$th i s−>viewPath = $path ;

$ th i s−>c o n t r o l l e r = $ c t l ;

}

/∗∗

∗ Load a temp la te and s e t data .

∗ @param s t r i n g $viewname The name o f the view f i l e

to load , minus e x t e n s i o n

∗ @param array $data An a s s o c i a t i v e array o f

view data

∗/

pub l i c func t i on load ($viewname , $data = n u l l) {

$th i s−>f i l ename = $viewname ;

$th i s−>data = $data ;

}

pub l i c func t i on route ($c t l , $act , $dat=’ ’) {

r e turn $th i s−>c o n t r o l l e r−>route ($c t l , $act , $dat) ;

}

C.2. LIBRARY CLASSES 284

pub l i c func t i on l ink ($ r e s) {

r e turn $th i s−>c o n t r o l l e r−>l ink ($ r e s) ;

}

pub l i c func t i on setMessage ($message , $type=” i n f o ”) {

i f (! i s set ($ SESSION [’ messages ’])) $ SESSION [’

messages ’] = array () ;

$ SESSION [’ messages ’] [] = array ($message , $type) ;

}

protec ted func t i on getMessages () {

$ r e t = @$ SESSION [’ messages ’] ;

unset ($ SESSION [’ messages ’]) ;

r e turn $ r e t ;

}

/∗∗

∗ Renders the view to the c l i e n t .

∗

∗ The header . php and f o o t e r . php view f i l e s are

wrapped around the loaded

∗ view a u t o m a t i c a l l y .

∗/

C.3. MODEL CLASSES 285

pub l i c func t i on render () {

i f ($ th i s−>data) {

extract ($ th i s−>data) ;

}

i f (! i s set ($ t i t l e)) {

$ t i t l e = ’DocMan Document Manager ’ ;

}

$ s e s s i on mes sage s = $th i s−>getMessages () ;

include $th i s−>viewPath .DIRECTORY SEPARATOR. ’ header

. php ’ ;

include $th i s−>viewPath .DIRECTORY SEPARATOR. $th i s−>

f i l ename . ’ . php ’ ;

include $th i s−>viewPath .DIRECTORY SEPARATOR. ’ f o o t e r

. php ’ ;

}

}

C.3 Model Classes

Listing C.13: models/Document.php

<?php

c l a s s Document extends ActiveRecord {

C.3. MODEL CLASSES 286

pub l i c $ id = n u l l ;

pub l i c $ t i t l e = ’ ’ ;

pub l i c $content = ’ ’ ;

pub l i c $owner = n u l l ;

p ro tec ted $db ;

pub l i c s t a t i c $dbconn ;

pub l i c func t i on c o n s t r u c t ($row=n u l l) {

$th i s−>db = s e l f : : getDb () ;

i f ($row) {

$th i s−>id = $row [’ id ’] ;

$ th i s−>t i t l e = $row [’ t i t l e ’] ;

$ th i s−>content = $row [’ content ’] ;

$ th i s−>owner = User : : GetByName($row [’ owner ’]) ;

}

}

protec ted s t a t i c func t i on getDb () {

i f (! s e l f : : $dbconn) {

s e l f : : $dbconn = new DB() ;

}

C.3. MODEL CLASSES 287

re turn s e l f : : $dbconn ;

}

s t a t i c pub l i c func t i on GetAll () {

$db = s e l f : : getDb () ;

$rows = $db−>SelectAl lDocuments () ;

$ r e t = array () ;

foreach ($rows as $row) {

$ r e t [] = new Document ($row) ;

}

r e turn $ r e t ;

}

s t a t i c pub l i c func t i on GetById ($ id) {

$db = s e l f : : getDb () ;

$row = $db−>SelectDocument ($ id) ;

r e turn new Document ($row) ;

}

pub l i c func t i on I n s e r t () {

$data = array (’ t i t l e ’=>$th i s−>t i t l e ,

’ content ’=>$th i s−>content ,

’ owner ’=>$th i s−>owner−>username) ;

C.3. MODEL CLASSES 288

$ l a s t i d = $th i s−>db−>InsertDocument ($data) ;

$ th i s−>id = $ l a s t i d ;

}

pub l i c func t i on Update () {

$data = array (’ id ’=>$th i s−>id ,

’ t i t l e ’=>$th i s−>t i t l e ,

’ content ’=>$th i s−>content ,

’ owner ’=>$th i s−>owner−>username) ;

r e turn $th i s−>db−>UpdateDocument ($th i s−>id , $data) ;

}

pub l i c func t i on Delete () {

$th i s−>db−>DeleteDocument ($th i s−>id) ;

}

}

Listing C.14: models/Group.php

<?php

c l a s s Group {

pub l i c $name = ’ ’ ;

pub l i c $ d e s c r i p t i o n = ’ ’ ;

C.3. MODEL CLASSES 289

p r i v a t e $db = n u l l ;

pub l i c func t i on c o n s t r u c t ($datarow=n u l l) {

$th i s−>db = new DB() ;

i f ($datarow) {

$th i s−>name = $datarow [’name ’] ;

$ th i s−>d e s c r i p t i o n = $datarow [’ d e s c r i p t i o n ’] ;

}

}

s t a t i c pub l i c func t i on GetAll () {

$db = new DB() ;

$rows = $db−>Se lectAl lGroups () ;

$ r e t = array () ;

foreach ($rows as $row) {

$ r e t [] = new Group ($row) ;

}

r e turn $ r e t ;

}

s t a t i c pub l i c func t i on GetByName($name) {

$db = new DB() ;

C.3. MODEL CLASSES 290

$row = $db−>SelectGroup ($name) ;

r e turn new Group ($row) ;

}

pub l i c func t i on IsMember ($user) {

$ r e t = $th i s−>db−>SelectGroupMembership ($user ,

$ th i s−>name) ;

r e turn $ r e t == 1 ;

}

pub l i c func t i on GetMembers () {

$members = $th i s−>db−>SelectGroupMembersByGroup (

$th i s−>name) ;

$ r e t = array () ;

foreach ($members as $u) {

$ r e t [] = new User ($u) ;

}

r e turn $ r e t ;

}

pub l i c func t i on Add($user) {

$data = array (’ user name ’=> $user−>username ,

’ group name ’=> $th i s−>name) ;

C.3. MODEL CLASSES 291

re turn $th i s−>db−>InsertGroupMember ($data) ;

}

pub l i c func t i on Remove($user) {

r e turn $th i s−>db−>DeleteGroupMember ($th i s−>name ,

$user−>username) ;

}

pub l i c func t i on I n s e r t () {

$data = array (’name ’=> $th i s−>name ,

’ d e s c r i p t i o n ’=> $th i s−>d e s c r i p t i o n) ;

r e turn $th i s−>db−>InsertGroup ($data) ;

}

pub l i c func t i on Update () {

$data = array (’name ’=> $th i s−>name ,

’ d e s c r i p t i o n ’=> $th i s−>d e s c r i p t i o n) ;

r e turn $th i s−>db−>UpdateGroup ($th i s−>name , $data) ;

}

}

C.3. MODEL CLASSES 292

Listing C.15: models/User.php

<?php

TODO: Need to account f o r

c l a s s User {

const PW HASH LENGTH = 32 ;

const AUTH TOK NAME = ’ auth ’ ;

const CURR USER = ” c u r r u s e r ” ;

pub l i c $username = ’ ’ ;

pub l i c $password = ’ ’ ;

p r i v a t e $db ;

pub l i c func t i on c o n s t r u c t ($datarow=n u l l) {

$th i s−>db = new DB() ;

i f ($datarow) {

$th i s−>username = $datarow [’ username ’] ;

$ th i s−>password = $datarow [’ password ’] ;

}

}

pub l i c func t i on SetPassword ($pass) {

$th i s−>password = $th i s−>hash ($pass) ;

C.3. MODEL CLASSES 293

}

pub l i c func t i on checkPassword ($pass) {

r e turn $th i s−>password == $th i s−>hash ($pass) ;

}

// Enforce t h a t passwords cannot be empty .

protec ted func t i on hash ($pass) {

i f (strlen ($pass) == 0) {

throw new Exception (’ Password too shor t ’) ;

}

r e turn md5($pass) ;

}

pub l i c func t i on GetGroups () {

$members = $th i s−>db−>SelectGroupMembersByUser (

$th i s−>username) ;

$groups = array () ;

foreach ($members as $member) {

$groups [] = new Group ($member) ;

}

r e turn $groups ;

}

C.3. MODEL CLASSES 294

pub l i c func t i on i sAdmin i s t ra to r () {

r e turn $th i s−>db−>SelectAdminMembershipByUser ($th i s

−>username) ;

}

pub l i c func t i on I n s e r t () {

$data = array (’ username ’=> $th i s−>username ,

’ password ’=> $th i s−>password) ;

r e turn $th i s−>db−>In s e r tUse r ($data) ;

}

pub l i c func t i on Update () {

$data = array (’ username ’=> $th i s−>username ,

’ password ’=> $th i s−>password) ;

r e turn $th i s−>db−>Updateuser ($ th i s−>username , $data

) ;

}

pub l i c func t i on Save () {

$user = $th i s−>db−>Se l e c tUse r ($ th i s−>username) ;

i f ($user === n u l l) {

r e turn $th i s−>I n s e r t () ;

C.3. MODEL CLASSES 295

} else {

r e turn $th i s−>Update () ;

}

}

s t a t i c pub l i c func t i on GetByName($name) {

$db = new DB() ;

$row = $db−>Se l e c tUse r ($name) ;

i f ($row) {

r e turn new User ($row) ;

} else {

r e turn n u l l ;

}

}

s t a t i c pub l i c func t i on GetAll () {

$db = new DB() ;

$rows = $db−>S e l e c t A l l U s e r s () ;

$ r e t = array () ;

foreach ($rows as $row) {

$ r e t [] = new User ($row) ;

}

r e turn $ r e t ;

C.4. VIEW TEMPLATES 296

}

}

C.4 View Templates

Listing C.16: views/document changeowner.php

<?php include ’ document options . php ’ ; ?>

<form ac t i on=”<?=$th i s−>route (’ document ’ , ’ changeowner

’ , $doc−>id)?>” method=” post ”>

<div>

”<?=$doc−>t i t l e ?>” c u r r e n t l y owned by

<?=$doc−>owner−>username?>.

< l a b e l for=”username”>Set document owner :</

l abe l>

<s e l e c t name=”username” id=”username”>

<?php foreach ($use r s as $user) : ?>

<option<?php i f ($user−>username == $doc−>

owner−>username) : ?> s e l e c t e d=” s e l e c t e d ”

<?php e n d i f ; ?>>

<?=$user−>username?>

</option>

<?php endforeach ; ?>

</s e l e c t >

C.4. VIEW TEMPLATES 297

<input type=”submit” value=”Save” />

</div>

</form>

Listing C.17: views/document changepermissions.php

<?php

include ’ document options . php ’ ;

$ g r a n t e d s t r = ’ Granted ’ ;

$ d e n i t e d s t r = ’ Denied ’ ;

$granted img = $th i s−>l ink (’ images / accept . png ’) ;

$denied img = $th i s−>l ink (’ images / c r o s s . png ’) ;

?>

<s c r i p t type=” text / j a v a s c r i p t ”>

$ (document) . ready (func t i on () {

$ (’#userPermList a . e d i t ’) . c l i c k (func t i on () {

var username = $ (t h i s) . parent () . parent () . c h i l d r e n ()

. f i r s t () . html () ;

var type = $ (t h i s) . parent () . a t t r (’ c l a s s ’) ;

var permval = $. trim ($ (t h i s) . prev () . a t t r (’ a l t ’)) ==

’<?=$ g r a n t e d s t r?> ’ ? 1 : 0 ;

$ (’#username ’) . va l (username) ;

$ (’#userPerm ’) . va l (type) ;

C.4. VIEW TEMPLATES 298

$ (’#use rSta tus ’) . va l (permval) ;

r e turn fa l se ;

}) ;

$ (’#groupPermList a . e d i t ’) . c l i c k (func t i on () {

var username = $ (t h i s) . parent () . parent () . c h i l d r e n ()

. f i r s t () . html () ;

var type = $ (t h i s) . parent () . a t t r (’ c l a s s ’) ;

var permval = $. trim ($ (t h i s) . prev () . a t t r (’ a l t ’)) ==

’<?=$ g r a n t e d s t r?> ’ ? 1 : 0 ;

$ (’#group ’) . va l (username) ;

$ (’#groupPerm ’) . va l (type) ;

$ (’#groupStatus ’) . va l (permval) ;

r e turn fa l se ;

}) ;

}) ;

</s c r i p t >

<h3>Edit pe rmi s s i ons for ”<a h r e f=”<?=$th i s−>route (’

document ’ , ’ view ’ , $doc−>id)?>”><?=$doc−>t i t l e ?>

”</h3>

<h4>User Permiss ions </h4>

C.4. VIEW TEMPLATES 299

<t ab l e id=” userPermList ”>

<tr>

<th>Username</th>

<th>Read</th>

<th>Edit</th>

<th>Delete</th>

</tr>

<?php foreach ($user perms as $user=>$perms) : ?>

<tr>

<td c l a s s=”username”><?=$user?></td>

<td c l a s s=” read ”>

<img c l a s s=” value ” a l t=”<?=@$perms [’ read ’] ?

$ g r a n t e d s t r : $den ided s t r?>” s r c=”<?=@$perms [’

read ’] ? $granted img : $denied img?>” />

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ” />

</td>

<td c l a s s=” e d i t ”>

<img c l a s s=” value ” a l t=”<?=@$perms [’ e d i t ’] ?

$ g r a n t e d s t r : $ d e n i e d s t r ?>” s r c=”<?=@$perms [’

e d i t ’] ? $granted img : $denied img?>” />

C.4. VIEW TEMPLATES 300

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ”/ >

</td>

<td c l a s s=” d e l e t e ”>

<img c l a s s=” value ” a l t=”<?=@$perms [’ d e l e t e ’] ?

$ g r a n t e d s t r : $ d e n i e d s t r ?>” s r c=”<?=@$perms [’

d e l e t e ’] ? $granted img : $denied img?>” />

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ”/ >

</td>

</tr>

<?php endforeach ; ?>

</table>

<div id=” userEdi t ”>

<form ac t i on=”<?=$th i s−>route (’ document ’ , ’

s e tUserPermis s ion ’ , $doc−>id)?>” method=” post ” id=

”userPerms”>

< l a b e l for=”username”>Username</l abe l>

<input name=” user ” id=”username” type=” text ” />

<s e l e c t name=”perm” id=”userPerm”>

<opt ion value=” read ”>Read</option>

C.4. VIEW TEMPLATES 301

<opt ion value=” e d i t ”>Edit</option>

<opt ion value=” d e l e t e ”>Delete</option>

</s e l e c t >

<s e l e c t name=” s t a t u s ” id=” use rSta tus ”>

<opt ion value=”1”>Granted</option>

<opt ion value=”0”>Denied</option>

</s e l e c t >

<input type=”submit” value=” Set ” />

</form>

</div>

<h4>Group Permiss ions </h4>

<t ab l e id=” groupPermList ”>

<tr>

<th>Group</th>

<th>Read</th>

<th>Edit</th>

<th>Delete</th>

</tr>

<?php foreach ($group perms as $group=>$perms) : ?>

<tr>

<td c l a s s=”group”><?=$group?></td>

<td c l a s s=” read ”>

C.4. VIEW TEMPLATES 302

<img c l a s s=” value ” a l t=”<?=@$perms [’ read ’] ?

$ g r a n t e d s t r : $ d e n i e d s t r ?>” s r c=”<?=@$perms [’

read ’] ? $granted img : $denied img?>” />

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ” />

</td>

<td c l a s s=” e d i t ”>

<img c l a s s=” value ” a l t=”<?=@$perms [’ e d i t ’] ?

$ g r a n t e d s t r : $ d e n i e d s t r ?>” s r c=”<?=@$perms [’

e d i t ’] ? $granted img : $denied img?>” />

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ”/ >

</td>

<td c l a s s=” d e l e t e ”>

<img c l a s s=” value ” a l t=”<?=@$perms [’ d e l e t e ’] ?

$ g r a n t e d s t r : $ d e n i e d s t r ?>” s r c=”<?=@$perms [’

d e l e t e ’] ? $granted img : $denied img?>” />

<a h r e f=”#” c l a s s=” e d i t ”><img s r c=”<?=$th i s−>l i n k

(’ images / page ed i t . png ’)?>” t i t l e=” Edit ” a l t=”

Edit ”/ >

</td>

C.4. VIEW TEMPLATES 303

</tr>

<?php endforeach ; ?>

</table>

<div id=” groupEdit ”>

<form ac t i on=”<?=$th i s−>route (’ document ’ , ’

setGroupPermiss ion ’ , $doc−>id)?>” method=” post ” id

=”groupPerms”>

< l a b e l for=”group”>Group</l abe l>

<input name=”group” id=”group” type=” text ” />

<s e l e c t name=”perm” id=”groupPerm”>

<opt ion value=” read ”>Read</option>

<opt ion value=” e d i t ”>Edit</option>

<opt ion value=” d e l e t e ”>Delete</option>

</s e l e c t >

<s e l e c t name=” s t a t u s ” id=” use rSta tus ”>

<opt ion value=”1”>Granted</option>

<opt ion value=”0”>Denied</option>

</s e l e c t >

<input type=”submit” value=” Set ” />

</form>

</div>

C.4. VIEW TEMPLATES 304

Listing C.18: views/document delete.php

<h3>Confirm delete</h3>

<p>Are you sure you want to delete ”<?=$doc−>t i t l e ?>”

?</p>

<div c l a s s=” conf irmButtons ”>

<form method=” post ” ac t i on=”<?=$th i s−>route (’ document

’ , ’ d e l e t e ’ , $doc−>id)?>”>

<input type=”submit” name=” conf i rm ” value=”Yes” />

</form>

<form method=” post ” ac t i on=”<?=$th i s−>route (’ document

’ , ’ view ’ , $doc−>id)?>”>

<input type=”submit” name=” cance l ” va lue=”No” />

</form>

</div>

Listing C.19: views/document edit.php

<?php include ’ document options . php ’ ; ?>

<form ac t i on=”<?=$th i s−>route (’ document ’ , $act ion , $doc

−>id)?>” method=” post ”>

<div>

< l a b e l for=” t i t l e ”>T i t l e :</ l abe l>

<input type=” text ” name=” t i t l e ” id=” t i t l e ”

va lue=”<?=h t m l e n t i t i e s ($doc−>t i t l e)?>”/>

C.4. VIEW TEMPLATES 305

</div>

<div>

< l a b e l for=”body”>Content :</ l abe l>

<t ex ta r ea name=”body” id=”body ” c o l s=”50” rows

=”30”><?=$doc−>content?></textarea>

</div>

<div>

<input type=”submit” value=”Submit” />

</div>

</form>

Listing C.20: views/document list.php

<h1>Document L i s t ing </h1>

<?php foreach ($a l l owed docs as $doc) : ?>

< l i ><a h r e f=”<?=$th i s−>route (”document” , ”view” ,

$doc−>id)?>”><?=$doc−>t i t l e ?></l i >

<?php endforeach ; ?>

Listing C.21: views/document options.php

<div id=” opt ions ”>

<h2>Actions :</h2>

C.4. VIEW TEMPLATES 306

< l i ><a h r e f=”<?=$th i s−>route (’ document ’ , ’ view

’ , $doc−>id)?>”><img s r c=”<?=$th i s−>l i n k (’

images /page . png ’)?>” a l t=”View” t i t l e=”View”

/></l i >

< l i ><a h r e f=”<?=$th i s−>route (’ document ’ , ’ e d i t

’ , $doc−>id)?>”><img s r c=”<?=$th i s−>l i n k (’

images / page ed i t . png ’)?>” a l t=” Edit ” t i t l e=”

Edit ” /></l i >

< l i ><a h r e f=”<?=$th i s−>route (’ document ’ , ’

d e l e t e ’ , $doc−>id)?>”><img s r c=”<?=$th i s−>

l i n k (’ images / p a g e d e l e t e . png ’)?>” a l t=”

Delete ” t i t l e=” Delete ” /></l i >

< l i ><a h r e f=”<?=$th i s−>route (’ document ’ , ’

changePermiss ions ’ , $doc−>id)?>”><img s r c=”

<?=$th i s−>l i n k (’ images / page key . png ’)?>” a l t

=”Change Permiss ions ” t i t l e=”Change

Permiss ions ” /></l i >

<?php i f ($ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r

()) : ?>

< l i ><a h r e f=”<?=$th i s−>route (’ document ’ , ’

changeOwner ’ , $doc−>id)?>”><img s r c=”<?=

$th i s−>l i n k (’ images / group key . png ’)?>” a l t=”

C.4. VIEW TEMPLATES 307

Change Owner” t i t l e=”Change Owner” /></

l i >

<?php e n d i f ; ?>

</div>

Listing C.22: views/document view.php

<?php include ’ document options . php ’ ; ?>

<h2 c l a s s=” t i t l e ”><?=$doc−>t i t l e ?></h2>

<div c l a s s=” by l i n e ”>Owned by <?=$doc−>owner−>username

?></div>

<div id=” content ”>

<?php

// Account f o r non−HTML documents .

i f (strip tags ($doc−>content) == $doc−>content) {

echo nl2br ($doc−>content) ;

} else {

echo $doc−>content ;

}

?>

</div>

Listing C.23: views/error denied.php

<div>

C.4. VIEW TEMPLATES 308

<h2>Access denied</h2>

<p>You do not have a c c e s s to t h i s page .

<?php i f ($ th i s−>c u r r e n t u s e r) : ?>

Please contact the system admin i s t ra to r i f you

b e l i e v e t h i s i s an e r r o r .

<?php else : ?>

Please log in and try again .

<?php e n d i f ; ?>

</p>

</div>

Listing C.24: views/footer.php

<div c l a s s=” f o o t e r ” s t y l e=” v i s i b i l i t y : hidden ”>

I cons cour te sy o f <a h r e f=” http ://www. famfamfam . com/

lab / i c on s / s i l k /”>Fam Fam Si lk .

</div>

</body>

</html>

Listing C.25: views/group create.php

<form ac t i on=”<?=$th i s−>route (’ group ’ , ’ c r e a t e ’)?>”

method=” post ”>

<div>

< l a b e l for=”group name”>Group name:</ l abe l>

C.4. VIEW TEMPLATES 309

<input id=”group name” name=”group name” type=”

text ” />

</div>

<div>

< l a b e l for=” d e s c r i p t i o n ”>Desc r ip t i on :</ l abe l>

<t ex ta r ea name=” d e s c r i p t i o n ” id=” d e s c r i p t i o n ”

c o l s=”30” rows=”10”></textarea>

</div>

<div>

<input type=”Submit” value=” Create ” />

</div>

</form>

Listing C.26: views/group list.php

<h1>Group l i s t </h1>

<?php foreach ($groups as $g) : ?>

< l i ><a h r e f=”<?=$th i s−>route (’ group ’ , ’ show ’ , $g−>

name)?>”><?=$g−>name?></l i >

<?php endforeach ; ?>

C.4. VIEW TEMPLATES 310

Listing C.27: views/group show.php

<div>

<form method=” post ” ac t i on=”<?=$th i s−>route (’ group

’ , ’ removeuser ’ , $group−>name)?>”>

< l a b e l for=” user remove ”>Group Members:</ l abe l>

<s e l e c t name=”” id=” user remove ” mul t ip l e=”

mul t ip l e ”>

<?php foreach ($group−>GetMembers () as

$user) : ?>

<opt ion value=”<?=$user−>username?>”><?=

$user−>username?></option>

<?php endforeach ; ?>

</s e l e c t >

<input type=”submit” value=”Remove” />

</form>

<form method=” post ” ac t i on=”<?=$th i s−>route (’ group

’ , ’ adduser ’ , $group−>name)?>”>

< l a b e l for=” user add ”>Add User :</ l abe l>

<input id=” user add ” type=” text ” name=”username

” />

<input type=”submit” value=”Add” />

C.4. VIEW TEMPLATES 311

</form>

</div>

<div><a h r e f=”<?=$th i s−>route (”group” , ” g e t l i s t ”)?>”>

Back to group l i s t </div>

Listing C.28: views/header.php

<!DOCTYPE html PUBLIC ”−//W3C//DTD XHTML 1.0

T r a n s i t i o n a l //EN”

” http ://www. w3 . org /TR/xhtml1/DTD/xhtml1−t r a n s i t i o n a l .

dtd”>

<html>

<head>

<t i t l e ><?=@ $ t i t l e?></ t i t l e >

<l ink type=” text / c s s ” r e l=” s t y l e s h e e t ” h r e f=”<?=$th i s

−>l i n k (’ s t y l e . c s s ’)?>” />

<s c r i p t type=” text / j a v a s c r i p t ” s r c=” http :// code .

jquery . com/ jquery −1 . 4 . 3 . min . j s ”></s c r i p t >

</head>

<body>

<div id=” header ”>

<h1>DocMan Document Manager</h1>

<?php i f ($ th i s−>c u r r e n t u s e r) : ?>

C.4. VIEW TEMPLATES 312

< l i ><a h r e f=”<?=$th i s−>route (”document” , ” g e t l i s t

”)?>”><img s r c=”<?=$th i s−>l i n k (’ images /

page wh i t e s tack . png ’)?>” t i t l e=”Document L i s t

” a l t=”Document L i s t ” /></l i >

< l i ><a h r e f=”<?=$th i s−>route (”document” , ” c r e a t e ”

)?>”><img s r c=”<?=$th i s−>l i n k (’ images / page add

. png ’)?>” t i t l e=” Create Document” a l t=” Create

Document” /></l i >

<?php i f ($ th i s−>c u r r e n t u s e r && $th i s−>

cu r r en t u s e r−>i sAdmin i s t r a to r ()) : ?>

< l i ><a h r e f=”<?=$th i s−>route (” user ” , ” g e t l i s t ”)?>

”><img s r c=”<?=$th i s−>l i n k (’ images / user . png ’)

?>” t i t l e=” L i s t Users ” a l t=” L i s t Users ” /></l i >

< l i ><a h r e f=”<?=$th i s−>route (” user ” , ” c r e a t e ”)?>”

><img s r c=”<?=$th i s−>l i n k (’ images / user add . png

’)?>” t i t l e=” Create User” a l t=” Create User”

/></l i >

< l i ><a h r e f=”<?=$th i s−>route (”group” , ” g e t l i s t ”)

?>”><img s r c=”<?=$th i s−>l i n k (’ images /group . png

’)?>” t i t l e=” L i s t Groups” a l t=” L i s t Groups”

/></l i >

C.4. VIEW TEMPLATES 313

< l i ><a h r e f=”<?=$th i s−>route (”group” , ” c r e a t e ”)?>

”><img s r c=”<?=$th i s−>l i n k (’ images / group add .

png ’)?>” t i t l e=” Create Group” a l t=” Create

Group” /></l i >

<?php e n d i f ; ?>

< l i ><a h r e f=”<?=$th i s−>route (” user ” , ” logout ”)?>”

><img s r c=”<?=$th i s−>l i n k (’ images / use r go . png

’)?>” t i t l e=”Log out” a l t==”Log out” /></

l i >

<?php e n d i f ; ?>

</div>

<?php i f ($ s e s s i on mes sage s) : ?>

<?php foreach ($ s e s s i on mes sage s as $msg) : ?>

<div c l a s s=”<?=$msg [1]? >”><?=$msg[0]?></ div>

<?php endforeach ; ?>

<?php e n d i f ; ?>

Listing C.29: views/index.php

< l i ><a h r e f=”<?=$th i s−>route (”document” , ” g e t l i s t ”)

?>”>Document Lis t </l i >

C.4. VIEW TEMPLATES 314

< l i ><a h r e f=”<?=$th i s−>route (”document” , ” c r e a t e ”)

?>”>Create Document</l i >

<?php i f ($ th i s−>cu r r en t u s e r−>i sAdmin i s t r a to r ()) :

?>

< l i ><a h r e f=”<?=$th i s−>route (” user ” , ” l i s t ”)?>”>

L i s t Users</l i >

< l i ><a h r e f=”<?=$th i s−>route (” user ” , ” c r e a t e ”)?>”>

Create User</l i >

< l i ><a h r e f=”<?=$th i s−>route (”group” , ” l i s t ”)?>”>

L i s t Groups</l i >

< l i ><a h r e f=”<?=$th i s−>route (”group” , ” c r e a t e ”)?>”>

Create Group</l i >

<?php e n d i f ; ?>

Listing C.30: views/user create.php

<div>

<form method=” post ” ac t i on=””>

<div>

< l a b e l for=”username”>Username</l abe l>

<input type=” text ” id=”username” name=”

username” />

</div>

C.4. VIEW TEMPLATES 315

<div>

< l a b e l for=”username”>Password</l abe l>

<input type=”password” id=”password” name=”

password” />

</div>

<div>

< l a b e l for=” conf i rm ”>Confirm</l abe l>

<input type=”password” id=” conf i rm ” name=”

conf i rm ” />

</div>

<div>

<input type=”submit” value=” Create ” />

</div>

</form>

</div>

Listing C.31: views/user list.php

<h1></h1>

<?php foreach ($use r s as $user) : ?>

< l i >

<a h r e f=”<?=$th i s−>route (’ user ’ , ’ changepassword ’ ,

$user−>username)?>”>

C.4. VIEW TEMPLATES 316

<?=$user−>username?>

</ l i >

<?php endforeach ; ?>

Listing C.32: views/user login.php

<form ac t i on=”<?=$th i s−>route (’ user ’ , ’ l o g i n ’)?>”

method=” post ” id=” log in f o rm ”>

<div>

< l a b e l for=”username”>Username</l abe l><input id

=”username” name=”username” type=” text ” />

</div>

<div>

< l a b e l for=”password”>Password</l abe l><input id

=”password” name=”password” type=”password”

/>

</div>

<div><input id=”submit” type=”submit” value=”Log In

” /></div>

</form>

Listing C.33: views/user password.php

<div>

C.5. AUXILIARY FILES 317

<form method=” post ” ac t i on=””>

<div>

< l a b e l for=”username”>Password</l abe l>

<input type=”password” id=”password” name=”

password” />

</div>

<div>

< l a b e l for=” conf i rm ”>Confirm</l abe l>

<input type=”password” id=” conf i rm ” name=”

conf i rm ” />

</div>

<div>

<input type=”submit” value=” Set Password”

/>

</div>

</form>

</div>

C.5 Auxiliary Files

Listing C.34: db.sql

−− Database i n i t i a l i z a t i o n s c r i p t for MySQL.

C.5. AUXILIARY FILES 318

−− S t a t i c permis s ion l i s t i n g . This e n f o r c e s the v a l i d

va lue s

−− for permi s s i ons in the UserPermiss ions and

GroupPermissions .

CREATE TABLE Permiss ions (

permis s ion VARCHAR(10) NOT NULL PRIMARY KEY

) Engine=InnoDB ;

INSERT INTO Permiss ions VALUES (’ read ’) , (’ e d i t ’) , (’

c r e a t e ’) , (’ d e l e t e ’) ;

CREATE TABLE Users (

username VARCHAR(255) NOT NULL,

password CHAR(32) NOT NULL,

PRIMARY KEY (username)

) Engine=InnoDB ;

−− Add the default admin i s t ra to r account

INSERT INTO Users (username , password) VALUES (’ admin ’ ,

MD5(’ admin ’)) ;

CREATE TABLE Documents (

id INTEGER UNSIGNED NOT NULL AUTO INCREMENT,

t i t l e TEXT NOT NULL,

C.5. AUXILIARY FILES 319

content TEXT NOT NULL,

owner VARCHAR(255) ,

PRIMARY KEY (id) ,

FOREIGN KEY (owner) REFERENCES Users (username)

ON UPDATE CASCADE ON DELETE CASCADE

) Engine=InnoDB ;

CREATE TABLE Groups (

name VARCHAR(255) NOT NULL,

d e s c r i p t i o n TEXT NOT NULL,

PRIMARY KEY (name)

) Engine=InnoDB ;

INSERT INTO Groups (name , d e s c r i p t i o n) VALUES (’

Admin i s t rators ’ , ’ System admin i s t r a to r s ’) ;

CREATE TABLE GroupMembers (

group name VARCHAR(255) NOT NULL,

user name VARCHAR(255) NOT NULL,

PRIMARY KEY (group name , user name) ,

FOREIGN KEY (user name) REFERENCES Users (username)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (group name) REFERENCES Groups (name)

ON UPDATE CASCADE ON DELETE CASCADE

C.5. AUXILIARY FILES 320

) Engine=InnoDB ;

INSERT INTO GroupMembers (group name , user name) VALUES

(’ Admin i s t rators ’ , ’ admin ’) ;

CREATE TABLE UserPermiss ions (

document id INTEGER UNSIGNED NOT NULL,

username VARCHAR(255) NOT NULL,

permis s ion VARCHAR(10) NOT NULL,

granted TINYINT(1) ,

PRIMARY KEY (document id , username , permis s ion) ,

FOREIGN KEY (document id) REFERENCES Documents (id)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (username) REFERENCES Users (username)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (permis s ion) REFERENCES Permiss ions (

permis s ion)

ON UPDATE CASCADE ON DELETE CASCADE

) Engine=InnoDB ;

CREATE TABLE GroupPermissions (

document id INTEGER UNSIGNED NOT NULL,

group name VARCHAR(255) NOT NULL,

permis s ion VARCHAR(10) NOT NULL,

C.5. AUXILIARY FILES 321

granted TINYINT(1) ,

PRIMARY KEY (document id , group name , permis s ion) ,

FOREIGN KEY (document id) REFERENCES Documents (id)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (group name) REFERENCES Groups (name)

ON UPDATE CASCADE ON DELETE CASCADE,

FOREIGN KEY (permis s ion) REFERENCES Permiss ions (

permis s ion)

ON UPDATE CASCADE ON DELETE CASCADE

) Engine=InnoDB ;

Listing C.35: index.php

<?php

session start () ;

error reporting (E ALL) ;

d a t e d e f a u l t t i m e z o n e s e t (’ America/New York ’) ;

f unc t i on auto l oad ($className) {

$ l o c a t i o n s = array (’ c o n t r o l l e r s ’ , ’ l i b ’ , ’ models ’) ;

foreach ($ l o c a t i o n s as $ l o c) {

$path = dirname (FILE) .DIRECTORY SEPARATOR. $ l o c .

DIRECTORY SEPARATOR. $className . ’ . php ’ ;

i f (f i l e ex i s t s ($path)) {

C.5. AUXILIARY FILES 322

r e q u i r e o n c e $path ;

r e turn ;

}

}

}

$db [’ dsn ’] = ’ mysql : host=l o c a l h o s t ; dbname=docman ’ ;

//$db [’ dsn ’] = ’ s q l i t e : ’ . dirname (FILE) .

DIRECTORY SEPARATOR. ’ docman . db ’ ;

$db [’ username ’] = ’docman ’ ;

$db [’ password ’] = ’namcod ’ ;

$ f c = new FrontCont ro l l e r () ;

$ fc−>baseUrl = ’ / index . php ’ ;

$ fc−>rootUr l = ’ / ’ ;

$ fc−>viewPath = dirname (FILE) .DIRECTORY SEPARATOR. ’

views ’ ;

$ fc−>d i spatch (i s set ($ SERVER [’REQUEST URI ’]) ? $ SERVER

[’REQUEST URI ’] : $ SERVER [’PHP SELF ’]) ;

Listing C.36: style.css

/∗

S t y l e s f o r the page header

C.5. AUXILIARY FILES 323

∗/

#header h1 {

font−s i z e : 14 pt ;

d i sp l ay : i n l i n e ;

margin : 5px ;

padding : 0 ;

}

#header u l {

margin : 5px ;

padding : 0 ;

d i sp l ay : i n l i n e ;

}

#header u l l i {

d i sp l ay : i n l i n e ;

margin− l e f t : 5px ;

}

#header {

c l e a r : both ;

border : th in s o l i d black ;

C.5. AUXILIARY FILES 324

background−c o l o r : #6699FF;

}

. i n fo , . e r ro r , . s u c c e s s {

margin : 4px ;

padding : 2px ;

border : th in s o l i d black ;

text−a l i g n : c en t e r ;

}

. i n f o {

background−c o l o r : ye l low ;

}

. s u c c e s s {

background−c o l o r : green ;

}

. e r r o r {

background−c o l o r : red ;

}

C.5. AUXILIARY FILES 325

/∗

Footer s t y l e s

∗/

. f o o t e r {

font−s i z e : 50%;

text−a l i g n : c en t e r ;

margin−top : 100px ;

}

/∗ Confirm buttons ∗/

. conf irmButtons form {

d i sp l ay : i n l i n e ;

}

/∗

S t y l e s f o r per−page c o n t r o l l i n k s .

∗/

#opt ions {

c l e a r : both ;

background−c o l o r : #C8C8C8 ;

border− l e f t : th in s o l i d b lack ;

border−r i g h t : th in s o l i d b lack ;

C.5. AUXILIARY FILES 326

border−bottom : th in s o l i d black ;

}

#opt ions u l {

margin : 0 0 0 5px ;

padding : 0 ;

d i sp l ay : i n l i n e ;

}

#opt ions u l l i {

d i sp l ay : i n l i n e ;

margin : 0 ;

}

#opt ions h2 {

font−s i z e : 12 pt ;

d i sp l ay : i n l i n e ;

margin : 0 0 0 5px ;

padding : 0 ;

}

. c l e a r {

c l e a r : both ;

C.5. AUXILIARY FILES 327

}

/∗ Login form s t y l e s ∗/

#log in f o rm {

width : 260px ;

margin : 10px auto ;

}

#log in f o rm > div {

c l e a r : both ;

padding−top : 4px ;

}

#log in f o rm > div > l a b e l {

f l o a t : l e f t ;

width : 125px ;

text−a l i g n : r i g h t

}

#log in f o rm > div > input {

f l o a t : r i g h t ;

width : 125px ;

text−a l i g n : l e f t ;

C.5. AUXILIARY FILES 328

}

#log in f o rm > div > #submit {

width : 6em;

margin : 5px auto ;

f l o a t : none ;

d i sp l ay : b lock ;

text−a l i g n : c en t e r ;

}

/∗ Document page s t y l e s ∗/

. t i t l e {

margin−bottom : 5px ;

}

. by l i n e {

font−s i z e : 70%;

margin−bottom : 2em;

}

/∗ User permis s ion page ∗/

#userPermList td , #groupPermList td {

text−a l i g n : c en t e r ;

C.5. AUXILIARY FILES 329

}

#userPermList td . username , #groupPermList td . username {

text−a l i g n : l e f t ;

}

Bibliography

[AC03] Peter Amey and Roderick Chapman. Static verification and

extreme programming. In SigAda ’03: Proceedings of the 2003

annual ACM SIGAda international conference on Ada, pages

4–9, New York, NY, USA, 2003. ACM Press.

[Ame02] Peter Amey. Correctness by construction: Better can also be

cheaper. Crosstalk Magazine, 2002.

[BH95a] Jonathan P. Bowen and Michael G. Hinchey. Seven more myths

of formal methods. IEEE Softw., 12(4):34–41, 1995.

[BH95b] Jonathan P. Bowen and Michael G. Hinchey. Ten command-

ments of formal methods. Computer, 28(4):56–63, 1995.

[BH05] Jonathan P. Bowen and Michael G. Hinchey. Ten command-

ments revisited: a ten-year perspective on the industrial appli-

cation of formal methods. In FMICS ’05: Proceedings of the

10th international workshop on Formal methods for industrial

330

BIBLIOGRAPHY 331

critical systems, pages 8–16, New York, NY, USA, 2005. ACM

Press.

[BJ78] Dines Björner and Cliff B. Jones, editors. The Vienna De-

velopment Method: The Meta-Language, London, UK, 1978.

Springer-Verlag.

[BN94] Manfred Broy and Greg Nelson. Adding fair choice to dijk-

stra’s calculus. ACM Trans. Program. Lang. Syst., 16(3):924–

938, 1994.

[BoLS09] U.S. Department of Labor Bureau of Labor Statistics. Occupa-

tional outlook handbook. http://www.bls.gov/oco/, 2009.

[Bro95] Frederick P. Brooks. The Mythical Man-Month: Essays on Soft-

ware Engineering, 20th Anniversary Edition. Addison-Wesley

Professional, 1995.

[CF98] Baudouin Le Charlier and Pierre Flener. Specifications are nec-

essarily informal or: some more myths of formal methods. J.

Syst. Softw., 40(3):275–296, 1998.

[CGR93] D. Craigen, S. Gerhart, and T.J. Ralston. An international

survey of industrial applications of formal methods (volume

1: Purpose, approach, analysis and conclusions, volume 2:

Case studies). Technical Report NIST GCR 93/626-V1 &

NIST GCR 93-626-V2 (Order numbers: PB93-178556/AS &

http://www.bls.gov/oco/

BIBLIOGRAPHY 332

PB93-178564/AS), National Inst. of Standards and Technol-

ogy, Gaithersburg, MD., National Technical Information Ser-

vice, 5285 Port Royal Road, Springfield, VA 22161, USA, 1993.

[Cha00] Roderick Chapman. Industrial experience with spark. Ada Lett.,

XX(4):64–68, 2000.

[CMCP+99] Emanuele Ciapessoni, Piergiorgio Mirandola, Alberto Coen-

Porisini, Dino Mandrioli, and Angelo Morzenti. From formal

models to formally based methods: an industrial experience.

ACM Trans. Softw. Eng. Methodol., 8(1):79–113, 1999.

[CN00] Ana Cavalcanti and David A. Naumann. A weakest precondi-

tion semantics for refinement of object-oriented programs. IEEE

Trans. Softw. Eng., 26(8):713–728, 2000.

[dB94a] Roberto Souto Maior de Barros. Deriving relational database

programs from formal specifications. In FME ’94: Proceedings

of the Second International Symposium of Formal Methods Eu-

rope on Industrial Benefit of Formal Methods, pages 703–723,

London, UK, 1994. Springer-Verlag.

[dB94b] Roberto Souto Maior de Barros. On the Formal Specification

and Derivation of Relational Database Applications. PhD thesis,

University of Glasgow, 1994.

BIBLIOGRAPHY 333

[DS09] Eric Dash and Brad Stone. Credit card processor says

some data was stolen. http://www.nytimes.com/2009/01/21/

technology/21breach.html, 2009.

[DSRJ04] Greg Dennis, Robert Seater, Derek Rayside, and Daniel Jack-

son. Automating commutativity analysis at the design level. In

George S. Avrunin and Gregg Rothermel, editors, ISSTA, pages

165–174, Boston, Massachusetts, USA,, July 11-14, 2004 2004.

ACM.

[EB04] Bruce Edmonds and Joanna J. Bryson. The insufficiency of

formal design methods – the necessity of an experimental ap-

proach - for the understanding and control of complex mas. In

AAMAS ’04: Proceedings of the Third International Joint Con-

ference on Autonomous Agents and Multiagent Systems, pages

938–945, Washington, DC, USA, 2004. IEEE Computer Society.

[FF96] Kate Finney and Norman Fenton. Evaluating the effectiveness

of z: the claims made about cics and where we go from here. J.

Syst. Softw., 35(3):209–216, 1996.

[FLM+05] John Fitzgerald, Peter Gorm Larsen, Paul Mukherjee, Nico

Plat, and Marcel Verhoef. Validated Designs for Object–oriented

Systems. Springer, New York, 2005.

http://www.nytimes.com/2009/01/21/technology/21breach.html
http://www.nytimes.com/2009/01/21/technology/21breach.html

BIBLIOGRAPHY 334

[Flo67] R.W. Floyd. Assigning meaning to programs. In Proc. Symp.

Applied Mathematics, pages 19–32. Am. Mathematical Soc.,

Am. Mathematical Soc., 1967.

[Fow02] Martin Fowler. Patterns of Enterprise Application Architecture.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 2002.

[GL80] David Gries and Gary Levin. Assignment and procedure call

proof rules. ACM Trans. Program. Lang. Syst., 2(4):564–579,

1980.

[Gri81] David B. Gries. The Science of Programming. Texts and Mono-

graphs in Computer Science. Springer-Verlag, 1981.

[Hal90] Anthony Hall. Seven myths of formal methods. IEEE Softw.,

7(5):11–19, 1990.

[HC02] Anthony Hall and Roderick Chapman. Correctness by construc-

tion: Developing a commercial secure system. IEEE Softw.,

19(1):18–25, 2002.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming.

Commun. ACM, 12(10):576–580, 1969.

[Hol97] C. Michael Holloway. Why engineers should consider formal

methods. In Proceedings of the 16th AIAA/IEEE Digital Avion-

BIBLIOGRAPHY 335

ics Systems Conference, volume 1, pages 1.3–16 – 1.3–22, Irvine

CA, October 1997.

[Jac98] Michael Jackson. Formal methods and traditional engineering.

J. Syst. Softw., 40(3):191–194, 1998.

[Jon90] Cliff B. Jones. Systematic Software Development using VDM.

Prentice-Hall, Upper Saddle River, NJ 07458, USA, 1990.

[KHCP00] Steve King, Jonathan Hammond, Rod Chapman, and Andy

Pryor. Is proof more cost-effective than testing? IEEE Trans.

Softw. Eng., 26:675–686, August 2000.

[LBR99] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Jml: A

notation for detailed design, 1999.

[PH97] Shari Lawrence Pfleeger and Les Hatton. Investigating the in-

fluence of formal methods. Computer, 30:33–43, February 1997.

[Pol01] Fiona Polack. A case study using lightweight formalism to re-

view an information system specification. Software – Practice

and Experience, 31(8):757–780, 2001.

[SHW02] Carol Smidts, Xin Huang, and James C. Widmaier. Producing

reliable software: an experiment. J. Syst. Softw., 61(3):213–224,

2002.

BIBLIOGRAPHY 336

[Sli04] Carol Sliwa. Blueprint for code automation. http://www.

computerworld.com/developmenttopics/development/

story/0,10801,91383,00.html, 2004.

[SM03] A. C. Simpson and A. P. Martin. Supplementing the under-

standing of z: a formal approach to database design. In BCS

2003: Proceedings of the BCS Teaching Formal Methods work-

shop, 2003.

[Smi00] Graeme Smith. The Object-Z specification language. Kluwer

Academic Publishers, Norwell, MA, USA, 2000.

[SW03] Donna C. Stidolph and E. James Jr. Whitehead. Managerial

issues for the consideration and use of formal methods. In FME,

pages 170–186, 2003.

[Zei02] Alan Zeichick. Modeling usage low; developers confused about

uml 2.0, mda. http://www.sdtimes.com/content/article.

aspx?ArticleID=26637, 2002.

http://www.computerworld.com/developmenttopics/development/story/0,10801,91383,00.html
http://www.computerworld.com/developmenttopics/development/story/0,10801,91383,00.html
http://www.computerworld.com/developmenttopics/development/story/0,10801,91383,00.html
http://www.sdtimes.com/content/article.aspx?ArticleID=26637
http://www.sdtimes.com/content/article.aspx?ArticleID=26637

	1 Introduction
	2 History
	2.1 Formal program meaning
	2.1.1 Beginnings
	2.1.2 Hoare Logics
	2.1.3 Dijkstra and Gries
	2.1.4 Object Oriented program semantics

	2.2 Formal modeling
	2.2.1 VDM and Z
	2.2.2 Semi-formal Modeling

	2.3 Purpose and Need for Formal Methods
	2.3.1 Complexity
	2.3.2 ``Scientific'' programming
	2.3.3 Improve reliability

	3 Overview of Formal Methods
	3.1 Methods
	3.1.1 SPARK
	3.1.2 VDM and VDM-SL
	3.1.3 Z
	3.1.4 Object-Z
	3.1.5 VDM++
	3.1.6 TCOZ

	3.2 Ways to apply FM
	3.2.1 Full formalism with proof
	3.2.2 Full requirements or design
	3.2.3 Semi-formal design or requirements
	3.2.4 Targeted application
	3.2.5 System review
	3.2.6 Test case generation

	3.3 Places to apply formalism
	3.3.1 Code level
	3.3.2 System design
	3.3.3 Database design
	3.3.4 Requirements analysis

	3.4 The ``methods'' in formal methods
	3.4.1 System review
	3.4.2 Automated tool support
	3.4.3 Limited formalization
	3.4.4 Micro-methods

	4 Applications of Formal Methods
	4.1 CICS
	4.2 FM vs. CMM experiment
	4.3 Light-weight review
	4.4 Pondage power plants
	4.5 Radiotherapy machine
	4.6 International Survey
	4.6.1 SSADM
	4.6.2 Inmos transputer
	4.6.3 Darlington nuclear generator

	4.7 Various Praxis projects
	4.7.1 Multos CA
	4.7.2 SHOLIS
	4.7.3 Lockheed C130J
	4.7.4 SIL4 failure
	4.7.5 CDIS

	5 Controversy and debate over applicability
	5.1 Why are formal methods not used?
	5.1.1 Tool support
	5.1.2 Method complexity
	5.1.3 Lack of awareness

	5.2 Reasons to use formal methods
	5.2.1 Increased reliability
	5.2.2 Increased tractability
	5.2.3 Decreased cost
	5.2.4 Proof of quality
	5.2.5 Advancement of software engineering
	5.2.6 Generation of test cases

	5.3 Arguments against formal methods
	5.3.1 Formal specifications are not generally meaningful
	5.3.2 Inapplicability of FM to certain areas
	5.3.3 Expensive

	6 Applying Formal Methods in Non-Critical and Information Systems
	6.1 Lessons
	6.1.1 Long-term investment
	6.1.2 Expensive to start
	6.1.3 Need resident experts
	6.1.4 Tools helpful but not necessary
	6.1.5 Right method for the right job

	6.2 Formal Methods in Information Systems
	6.2.1 Role of formalism: specification vs. design
	6.2.2 Business rules
	6.2.3 User interface specification
	6.2.4 Databases

	6.3 Goals
	6.3.1 Black-box formal methods
	6.3.2 Design patterns for FM
	6.3.3 Standard notation or general method

	7 Modeling a Web Application Using VDM++ and PHP
	7.1 Choice of technology and notation
	7.1.1 Formal notation
	7.1.2 Tooling
	7.1.3 Overview of the PHP language

	7.2 Development Approach
	7.3 System requirements
	7.3.1 Requirements specification
	7.3.2 System model

	7.4 Component-level specification
	7.5 System Design
	7.5.1 Architecture
	7.5.2 Database Design
	7.5.3 Control Flow Modeling

	8 Implementation of the Formal Specification
	8.1 Approach
	8.2 Architecture and Design
	8.3 Design Variations
	8.3.1 Addition of view logic
	8.3.2 Usability revisions
	8.3.3 Dynamic instantiation
	8.3.4 Permission list population

	8.4 Results

	9 Conclusion
	A Listing of system requirements
	A.1 Informal high-level requirements
	A.2 Elaborated requirements

	B Formal Models
	B.1 High-Level Specification
	B.2 Component-Level Specification
	B.3 Detailed Specification
	B.3.1 Controller Classes
	B.3.2 Model Classes
	B.3.3 Other Classes

	C System Code
	C.1 Controller Classes
	C.2 Library Classes
	C.3 Model Classes
	C.4 View Templates
	C.5 Auxiliary Files

